|
|
Research Progress on Regulation of Endoplasmic Reticulum-Lipid Droplet-Mitochondrial Interactions in Animal Lipid Metabolism |
WANG Ming-Yu, PANG Wei-Jun, CAI Rui* |
Animal Fat Deposition and Muscle Development Laboratory, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China |
|
|
Abstract Lipid droplet (LD), endoplasmic reticulum (ER) and mitochondria are key organelles in animal cells, and their interaction plays an important role in regulating animal lipid metabolism. ER interacts with LD to promote LD outgrowth, growth, and lipid transfer, so that LD can be efficiently stored and distributed to maintain cellular energy balance and lipid homeostasis. In addition, the interaction between LD and mitochondria promotes the efficient uptake of free fatty acids (FFAs) by mitochondria, which helps to maintain cellular energy supply. This review focuses on LD, and summarize the interactions between LD and mitochondria, ER, peroxisomes, lysosomes, and other organelles, as well as the advances of the regulation of in animal lipid metabolism. This review provides a new way of investigating lipid metabolism from the perspective of organelles, as well as a new direction for the analysis of the mechanism of formation of livestock and poultry meat traits and treatment of metabolic diseases in human (Homo sapiens).
|
Received: 22 November 2023
|
|
Corresponding Authors:
* cairui1663@nwafu.edu.cn
|
|
|
|
[1] 蔡立鹏, 康娜, 谭金玲, 等. 2022. 脂滴与胞内细胞器互作研究进展[J]. 中国细胞生物学学报, 44(05): 964-972. (Cai L P, Kang N, Tan J L, et al.2022. Advances in the study of lipid droplet interactions with intracellular organelles[J]. Chinese Journal of Cell Biology, 44(05): 964-972.) [2] 颜冰, 胡俊杰. 2019. 内质网相关细胞器互作的研究进展[J]. 中国细胞生物学学报, 41(02): 175-184. (Yan B, Hu J J.2019. Advances in endoplasmic reticulum-related organelle interactions[J]. Chinese Journal of Cell Biology, 41(02): 175-184.) [3] Benador I Y, Veliova M, Mahdaviani K, et al.2018. Mitochondria bound to lipid droplets have unique bioenergetics, composition, and dynamics that support lipid droplet expansion[J]. Cell Metabolism, 27(4): 869-885. [4] Bian X, Liu R, Meng Y, et al.2021. Lipid metabolism and cancer[J]. The Journal of Experimental Medicine, 218(1): e20201606. [5] Binns D, Januszewski T, Chen Y, et al.2006. An intimate collaboration between peroxisomes and lipid bodies[J]. The Journal of Cell Biology, 173(5): :719-731. [6] Blackstone C.2018. Converging cellular themes for the hereditary spastic paraplegias[J]. Current Opinion in Neurobiology, 51: 139-146. [7] Boutant M, Kulkarni S S, Joffraud M, et al.2017. Mfn2 is critical for brown adipose tissue thermogenic function[J]. The EMBO Journal, 36(11): 1543-1558. [8] Brasaemle D L.2007. Thematic review series: Adipocyte biology. The perilipin family of structural lipid droplet proteins: Stabilization of lipid droplets and control of lipolysis[J]. Journal of Lipid Research, 48(12): 2547-2559. [9] Brasaemle D L, Wolins N E.2012. Packaging of fat: An evolving model of lipid droplet assembly and expansion[J]. The Journal of Biological Chemistry, 287(4): 2273-2279. [10] Bravo-Sagua R, Lopez-Crisosto C, Criollo A, et al.2023. Organelle communication: Joined in sickness and in health[J]. Physiology (Bethesda, Md.), 38(3): 101-109. [11] Browman D T, Resek M E, Zajchowski L D, et al.2006. Erlin-1 and erlin-2 are novel members of the prohibitin family of proteins that define lipid-raft-like domains of the ER[J]. Journal of Cell Science, 119(Pt 15): 3149-3160. [12] Brown A L, Mark B J.2017. Critical roles for alpha/beta hydrolase domain 5 (ABDH5)/comparative gene identification-58 (CGI-58) at the lipid droplet interface and beyond[J]. Biochimica et Biophysica Acta. Molecular and Cell Biology of Lipids, 1862(10 Pt B): 1233-1241. [13] Calderon-Dominguez M, Mir J F, Fucho R, et al.2016. Fatty acid metabolism and the basis of brown adipose tissue function[J]. Adipocyte, 5(2): 98-118. [14] Chang C L, Weigel A V, Ioannou M S, et al.2019. Spastin tethers lipid droplets to peroxisomes and directs fatty acid trafficking through ESCRT-III[J]. The Journal of Cell Biology, 218(8): 2583-2599. [15] Chen F J, Yin Y, Chua B T, et al.2020. CIDE family proteins control lipid homeostasis and the development of metabolic diseases[J]. Traffic, 21(1): 94-105. [16] Chen F, Yan B, Ren J, et al.2021. FIT2 organizes lipid droplet biogenesis with ER tubule-forming proteins and septins[J]. The Journal of Cell Biology, 220(5): e201907183. [17] Choudhary V, Ojha N, Golden A, et al.2015. A conserved family of proteins facilitates nascent lipid droplet budding from the ER[J]. The Journal of Cell Biology, 211(2): 261-271. [18] Chung J, Torta F, Masai K, et al.2015. Intracellular transport. Pi4p/phosphatidylserine countertransport at ORP5- and ORP8-mediated ER-plasma membrane contacts[J]. Science, 349(6246): 428-432. [19] Chung J, Wu X, Lambert T J, et al.2019. LDAF1 and seipin form a lipid droplet assembly complex[J]. Developmental Cell, 51(5): 551-563. [20] Cohen S, Valm A M, Lippincott-Schwartz J.2018. Interacting organelles[J]. Current Opinion in Cell Biology, 53: 84-91. [21] Cui L, Liu P.2020. Two types of contact between lipid droplets and mitochondria[J]. Frontiers in Cell and Developmental Biology, 8: 618322. [22] Cui Z, Vance J E, Chen M H, et al.1993. Cloning and expression of a novel phosphatidylethanolamine N-methyltransferase. A specific biochemical and cytological marker for a unique membrane fraction in rat liver[J]. The Journal of Biological Chemistry, 268(22): 16655-16663. [23] Datta S, Liu Y, Hariri H, et al.2019. Cerebellar ataxia disease-associated SNX14 promotes lipid droplet growth at er-droplet contacts[J]. The Journal of Cell Biology, 218(4): 1335-1351. [24] Dejgaard S Y, Presley J F.2021. Interactions of lipid droplets with the intracellular transport machinery[J]. International Journal of Molecular Sciences, 22(5): 2776. [25] Deng Y, Zhou C, Mirza A H, et al.2021. Rab18 binds Plin2 and ACSL3 to mediate lipid droplet dynamics[J]. Biochimica et Biophysica Acta. Molecular and Cell Biology of Lipids, 1866(7): 158923. [26] Di Mattia T, Tomasetto C, Alpy F.2020. Faraway, so close! Functions of endoplasmic reticulum-endosome contacts[J]. Biochimica et Biophysica Acta. Molecular and Cell Biology of Lipids, 1865(1): 158490. [27] Du X, Kumar J, Ferguson C, et al.2011. A role for oxysterol-binding protein-related protein 5 in endosomal cholesterol trafficking[J]. The Journal of Cell Biology, 192(1): 121-135. [28] Du X, Zhou L, Aw Y C, et al.2020. ORP5 localizes to er-lipid droplet contacts and regulates the level of PI(4)P on lipid droplets[J]. The Journal of Cell Biology, 219(1): e201905162. [29] Eisenberg-Bord M, Shai N, Schuldiner M, et al.2016. A tether is a tether is a tether: Tethering at membrane contact sites[J]. Developmental Cell, 39(4): 395-409. [30] Elbaz Y, Schuldiner M.2011. Staying in touch: THE molecular era of organelle contact sites[J]. Trends in Biochemical Sciences, 36(11): 616-623. [31] Fan J, Li X, Issop L, et al.2016. ACBD2/ECI2-mediated peroxisome-mitochondria interactions in leydig cell steroid biosynthesis[J]. Molecular Endocrinology, 30(7): 763-782. [32] Fei W, Shui G, Gaeta B, et al.2008. FLD1P, a functional homologue of human seipin, regulates the size of lipid droplets in yeast[J]. The Journal of Cell Biology, 180(3): 473-482. [33] Fransen M, Lismont C, Walton P.2017. The peroxisome-mitochondria connection: How and why[J]? International Journal of Molecular Sciences, 18(6): 1126. [34] Freyre C, Rauher P C, Ejsing C S, et al.2019. MIGA2 links mitochondria, the ER, and lipid droplets and promotes de novo lipogenesis in adipocytes[J]. Molecular Cell, 76(5): 811-825. [35] Fujimoto M, Hayashi T, Su T P.2012. The role of cholesterol in the association of endoplasmic reticulum membranes with mitochondria[J]. Biochemical and Biophysical Research Communications, 417(1): 635-639. [36] Gao G, Chen F J, Zhou L, et al.2017. Control of lipid droplet fusion and growth by cide family proteins[J]. Biochimica et Biophysica Acta. Molecular and Cell Biology of Lipids, 1862(10 Pt B): 1197-1204. [37] Gordaliza-Alaguero I, Canto C, Zorzano A.2019. Metabolic implications of organelle-mitochondria communication[J]. EMBO Reports, 20(9): e47928. [38] Granneman J G, Moore H P, Mottillo E P, et al.2011. Interactions of perilipin-5 (Plin5) with adipose triglyceride lipase[J]. The Journal of Biological Chemistry, 286(7): 5126-5135. [39] Greenberg A S, Coleman R A, Kraemer F B, et al.2011. The role of lipid droplets in metabolic disease in rodents and humans[J]. The Journal of Clinical Investigation, 121(6): 2102-2110. [40] Gross D A, Zhan C, Silver D L.2011. Direct binding of triglyceride to fat storage-inducing transmembrane proteins 1 and 2 is important for lipid droplet formation[J]. Proceedings of the National Academy of Sciences of the USA, 108(49): 19581-19586. [41] Han G S, Wu W I, Carman G M.2006. The Saccharomyces cerevisiae lipin homolog is a Mg2+-dependent phosphatidate phosphatase enzyme[J]. The Journal of Biological Chemistry, 281(14): 9210-9218. [42] Hayashi Y, Hayashi M, Hayashi H, et al.2001. Direct interaction between glyoxysomes and lipid bodies in cotyledons of the Arabidopsis thaliana ped1 mutant[J]. Protoplasma, 218(1-2): 83-94. [43] Helle S C, Kanfer G, Kolar K, et al.2013. Organization and function of membrane contact sites[J]. Biochimica et Biophysica Acta, 1833(11): 2526-2541. [44] Henne W M.2020. The molecular ERA of lipid droplets[J]. Contact, 3: 981677094 [45] Herms A, Bosch M, Reddy B J, et al.2015. AMPK activation promotes lipid droplet dispersion on detyrosinated microtubules to increase mitochondrial fatty acid oxidation[J]. Nature Communications, 6: 7176. [46] Huang X, Jiang C, Yu L, et al.2020. Current and emerging approaches for studying inter-organelle membrane contact sites[J]. Frontiers in Cell and Developmental Biology, 8: 195. [47] Hynynen R, Laitinen S, Kakela R, et al.2005. Overexpression of osbp-related protein 2 (ORP2) induces changes in cellular cholesterol metabolism and enhances endocytosis[J]. The Biochemical Journal, 390(Pt 1): 273-283. [48] Hynynen R, Suchanek M, Spandl J, et al.2009. OSBP-related protein 2 is a sterol receptor on lipid droplets that regulates the metabolism of neutral lipids[J]. Journal of Lipid Research, 50(7): 1305-1315. [49] Im Y J, Raychaudhuri S, Prinz W A, et al.2005. Structural mechanism for sterol sensing and transport by OSBP-related proteins[J]. Nature, 437(7055): 154-158. [50] Issop L, Fan J, Lee S, et al.2015. Mitochondria-associated membrane formation in hormone-stimulated leydig cell steroidogenesis: Role of ATAD3[J]. Endocrinology, 156(1): 334-345. [51] Jagerstrom S, Polesie S, Wickstrom Y, et al.2009. Lipid droplets interact with mitochondria using SNAP23[J]. Cell Biology International, 33(9): 934-940. [52] Janikiewicz J, Szymanski J, Malinska D, et al.2018. Mitochondria-associated membranes in aging and senescence: Structure, function, and dynamics[J]. Cell Death & Disease, 9(3): 332. [53] Joshi A S, Nebenfuehr B, Choudhary V, et al.2018. Lipid droplet and peroxisome biogenesis occur at the same ER subdomains[J]. Nature Communications, 9(1): 2940. [54] Kaushik S, Cuervo A M.2015. Degradation of lipid droplet-associated proteins by chaperone-mediated autophagy facilitates lipolysis[J]. Nature Cell Biology, 17(6): 759-770. [55] Kaushik S, Cuervo A M.2018. The coming of age of chaperone-mediated autophagy[J]. Nature Reviews. Molecular Cell Biology, 19(6): 365-381. [56] Kentala H, Koponen A, Vihinen H, et al.2018. OSBP-related protein-2 (ORP2): A novel akt effector that controls cellular energy metabolism[J]. Cellular and Molecular Life Sciences, 75(21): 4041-4057. [57] Kong J, Ji Y, Jeon Y G, et al.2020. Spatiotemporal contact between peroxisomes and lipid droplets regulates fasting-induced lipolysis via PEX5[J]. Nature Communications, 11(1): 578. [58] Krahmer N, Farese R J, Walther T C.2013. Balancing the fat: Lipid droplets and human disease[J]. EMBO Molecular Medicine, 5(7): 973-983. [59] Lackner L L.2019. The expanding and unexpected functions of mitochondria contact sites[J]. Trends in Cell Biology, 29(7): 580-590. [60] Lass A, Zimmermann R, Haemmerle G, et al.2006. Adipose triglyceride lipase-mediated lipolysis of cellular fat stores is activated by CGI-58 and defective in chanarin-dorfman syndrome[J]. Cell Metabolism, 3(5): 309-319. [61] Laurens C, Bourlier V, Mairal A, et al.2016. Perilipin 5 fine-tunes lipid oxidation to metabolic demand and protects against lipotoxicity in skeletal muscle[J]. Scientific Reports, 6: 38310. [62] Lee Y J, Kim J W.2017. Monoacylglycerol O-acyltransferase 1 (MGAT1) localizes to the er and lipid droplets promoting triacylglycerol synthesis[J]. BMB Reports, 50(7): 367-372. [63] Lewin T M, Van Horn C G, Krisans S K, et al.2002. Rat liver acyl-coa synthetase 4 is a peripheral-membrane protein located in two distinct subcellular organelles, peroxisomes, and mitochondrial-associated membrane[J]. Archives of Biochemistry and Biophysics, 404(2): 263-270. [64] Li D, Zhao Y G, Li D, et al.2019. The ER-localized protein DFCP1 modulates ER-lipid droplet contact formation[J]. Cell Reports, 27(2): 343-358. [65] Martello A, Platt F M, Eden E R.2020. Staying in touch with the endocytic network: The importance of contacts for cholesterol transport[J]. Traffic, 21(5): 354-363. [66] Mcfie P J, Banman S L, Kary S, et al.2011. Murine diacylglycerol acyltransferase-2 (DGAT2) can catalyze triacylglycerol synthesis and promote lipid droplet formation independent of its localization to the endoplasmic reticulum[J]. The Journal of Biological Chemistry, 286(32): 28235-28246. [67] Nguyen T B, Louie S M, Daniele J R, et al.2017. DGAT1-dependent lipid droplet biogenesis protects mitochondrial function during starvation-induced autophagy[J]. Developmental Cell, 42(1): 9-21. [68] Ohsaki Y, Suzuki M, Fujimoto T.2014. Open questions in lipid droplet biology[J]. Chemistry & Biology, 21(1): 86-96. [69] Olkkonen V M.2022. The emerging roles of OSBP-related proteins in cancer: Impacts through phosphoinositide metabolism and protein-protein interactions[J]. Biochemical Pharmacology, 196: 114455. [70] Olkkonen V M, Koponen A, Arora A.2019. Osbp-related protein 2 (ORP2): Unraveling its functions in cellular lipid/carbohydrate metabolism, signaling and f-actin regulation[J]. The Journal of Steroid Biochemistry and Molecular Biology, 192: 105298. [71] Olzmann J A, Carvalho P.2019. Dynamics and functions of lipid droplets[J]. Nature Reviews Molecular Cell Biology, 20(3): 137-155. [72] Ouyang Q, Chen Q, Ke S, et al.2023. Rab8a as a mitochondrial receptor for lipid droplets in skeletal muscle[J]. Developmental Cell, 58(4): 289-305. [73] Pagac M, Cooper D E, Qi Y, et al.2016. Seipin regulates lipid droplet expansion and adipocyte development by modulating the activity of glycerol-3-phosphate acyltransferase[J]. Cell Reports, 17(6): 1546-1559. [74] Papadopoulos C, Orso G, Mancuso G, et al.2015. Spastin binds to lipid droplets and affects lipid metabolism[J]. PLOS Genetics, 11(4): e1005149. [75] Pol A, Gross S P, Parton R G.2014. Review: Biogenesis of the multifunctional lipid droplet: Lipids, proteins, and sites[J]. The Journal of Cell Biology, 204(5): 635-646. [76] Prasad M, Kaur J, Pawlak K J, et al.2015. Mitochondria-associated endoplasmic reticulum membrane (MAM) regulates steroidogenic activity via steroidogenic acute regulatory protein (star)-voltage-dependent anion channel 2 (VDAC2) interaction[J]. The Journal of Biological Chemistry, 290(5): 2604-2616. [77] Puglielli L, Konopka G, Pack-Chung E, et al.2001. Acyl-coenzyme A: Cholesterol acyltransferase modulates the generation of the amyloid beta-peptide[J]. Nature Cell Biology, 3(10): 905-912. [78] Raimondi A, Ilacqua N, Pellegrini L.2023. Liver inter-organelle membrane contact sites revealed by serial section electron tomography[J]. Methods in Cell Biology, 177: 101-123. [79] Rakotonirina-Ricquebourg R, Costa V, Teixeira V.2022. Hello from the other side: Membrane contact of lipid droplets with other organelles and subsequent functional implications[J]. Progress in Lipid Research, 85: 101141. [80] Rambold A S, Cohen S, Lippincott-Schwartz J.2015. Fatty acid trafficking in starved cells: Regulation by lipid droplet lipolysis, autophagy, and mitochondrial fusion dynamics[J]. Developmental Cell, 32(6): 678-692. [81] Raturi A, Simmen T.2013. Where the endoplasmic reticulum and the mitochondrion tie the knot: The mitochondria-associated membrane (MAM)[J]. Biochimica et Biophysica Acta, 1833(1): 213-224. [82] Resende R, Fernandes T, Pereira A C, et al.2022. Endoplasmic reticulum-mitochondria contacts modulate reactive oxygen species-mediated signaling and oxidative stress in brain disorders: The key role of sigma-1 receptor[J]. Antioxidants & Redox Signaling, 37(10-12): 758-780. [83] Sala-Vila A, Navarro-Lerida I, Sanchez-Alvarez M, et al.2016. Interplay between hepatic mitochondria-associated membranes, lipid metabolism and caveolin-1 in mice[J]. Scientific Reports, 6: 27351. [84] Salo V T, Li S, Vihinen H, et al.2019. Seipin facilitates triglyceride flow to lipid droplet and counteracts droplet ripening via endoplasmic reticulum contact[J]. Developmental Cell, 50(4): 478-493. [85] Sano R, Annunziata I, Patterson A, et al.2009. GM1-ganglioside accumulation at the mitochondria-associated er membranes links ER stress to Ca2+-dependent mitochondrial apoptosis[J]. Molecular Cell, 36(3): 500-511. [86] Sargsyan Y, Thoms S.2020. Staying in healthy contact: How peroxisomes interact with other cell organelles[J]. Trends in Molecular Medicine, 26(2): 201-214. [87] Schoeler M, Caesar R.2019. Dietary lipids, gut microbiota and lipid metabolism[J]. Reviews in Endocrine & Metabolic Disorders, 20(4): 461-472. [88] Schrader M.2001. Tubulo-reticular clusters of peroxisomes in living COS-7 cells: Dynamic behavior and association with lipid droplets[J]. The Journal of Histochemistry and Cytochemistry : Official Journal of the Histochemistry Society, 49(11): 1421-1429. [89] Schulze R J, Krueger E W, Weller S G, et al.2020. Direct lysosome-based autophagy of lipid droplets in hepatocytes[J]. Proceedings of the National Academy of Sciences of the USA, 117(51): 32443-32452. [90] Scorrano L, De Matteis M A, Emr S, et al.2019. Coming together to define membrane contact sites[J]. Nature Communications, 10(1): 1287. [91] Shai N, Schuldiner M, Zalckvar E.2016. No peroxisome is an island - peroxisome contact sites[J]. Biochimica et Biophysica Acta, 1863(5): 1061-1069. [92] Shai N, Yifrach E, van Roermund C W, et al.2018. Systematic mapping of contact sites reveals tethers and a function for the peroxisome-mitochondria contact[J]. Nature Communications, 9(1): 1761. [93] Sim M, Persiani E, Talukder M, et al.2020. Oligomers of the lipodystrophy protein seipin may co-ordinate GPAT3 and AGPAT2 enzymes to facilitate adipocyte differentiation[J]. Scientific Reports, 10(1): 3259. [94] Singh R, Kaushik S, Wang Y, et al.2009. Autophagy regulates lipid metabolism[J]. Nature, 458(7242): 1131-1135. [95] Stobart A K, Stymne S, Hoglund S.1986. Safflower microsomes catalyse oil accumulation in vitro: A model system[J]. Planta, 169(1): 33-37. [96] Stone S J, Levin M C, Zhou P, et al.2009. The endoplasmic reticulum enzyme DGAT2 is found in mitochondria-associated membranes and has a mitochondrial targeting signal that promotes its association with mitochondria[J]. The Journal of Biological Chemistry, 284(8): 5352-5361. [97] Stone S J, Vance J E.2000. Phosphatidylserine synthase-1 and -2 are localized to mitochondria-associated membranes[J]. The Journal of Biological Chemistry, 275(44): 34534-34540. [98] Sui X, Arlt H, Brock K P, et al.2018. Cryo-electron microscopy structure of the lipid droplet-formation protein seipin[J]. The Journal of Cell Biology, 217(12): 4080-4091. [99] Sztalryd C, Brasaemle D L.2017. The perilipin family of lipid droplet proteins: Gatekeepers of intracellular lipolysis[J]. Biochimica et Biophysica Acta. Molecular and Cell Biology of Lipids, 1862(10 Pt B): 1221-1232. [100] Szymanski J, Janikiewicz J, Michalska B, et al.2017. Interaction of mitochondria with the endoplasmic reticulum and plasma membrane in calcium homeostasis, lipid trafficking and mitochondrial structure[J]. International Journal of Molecular Sciences, 18(7): 1576. [101] Szymanski K M, Binns D, Bartz R, et al.2007. The lipodystrophy protein seipin is found at endoplasmic reticulum lipid droplet junctions and is important for droplet morphology[J]. Proceedings of the National Academy of Sciences of the USA, 104(52): 20890-20895. [102] Tauchi-Sato K, Ozeki S, Houjou T, et al.2002. The surface of lipid droplets is a phospholipid monolayer with a unique fatty acid composition[J]. The Journal of Biological Chemistry, 277(46): 44507-44512. [103] Thiam A R, Dugail I.2019. Lipid droplet-membrane contact sites - from protein binding to function[J]. Journal of Cell Science, 132(12): jcs230169. [104] Tocher D R, Bendiksen E A, Campbell P J, et al.2008. The role of phospholipids in nutrition and metabolism of teleost fish[J]. Aquaculture, 280(1): 21-34 [105] Tong J, Yang H, Yang H, et al.2013. Structure of OSH3 reveals a conserved mode of phosphoinositide binding in oxysterol-binding proteins[J]. Structure, 21(7): 1203-1213. [106] Valm A M, Cohen S, Legant W R, et al.2017. Applying systems-level spectral imaging and analysis to reveal the organelle interactome[J]. Nature, 546(7656): 162-167. [107] Vance J E.2014. MAM (mitochondria-associated membranes) in mammalian cells: lipids and beyond[J]. Biochimica et Biophysica Acta, 1841(4): 595-609. [108] Varghese M, Kimler V A, Ghazi F R, et al.2019. Adipocyte lipolysis affects perilipin 5 and cristae organization at the cardiac lipid droplet-mitochondrial interface[J]. Scientific Reports, 9(1): 4734. [109] Venditti R, Masone M C, De Matteis M A.2020. ER-Golgi membrane contact sites[J]. Biochemical Society Transactions, 48(1): 187-197. [110] Walther T C, Farese R J.2012. Lipid droplets and cellular lipid metabolism[J]. Annual Review of Biochemistry, 81: 687-714. [111] Wang C, Zhao Y, Gao X, et al.2015. Perilipin 5 improves hepatic lipotoxicity by inhibiting lipolysis[J]. Hepatology, 61(3): 870-882. [112] Wang H, Ma Q, Qi Y, et al.2019. ORP2 delivers cholesterol to the plasma membrane in exchange for phosphatidylinositol 4, 5-bisphosphate (PI(4,5)P(2))[J]. Molecular Cell, 73(3): 458-473. [113] Wang H, Sreenivasan U, Hu H, et al.2011. Perilipin 5, a lipid droplet-associated protein, provides physical and metabolic linkage to mitochondria[J]. Journal of Lipid Research, 52(12): 2159-2168. [114] Wang J, Fang N, Xiong J, et al.2021. An ESCRT-dependent step in fatty acid transfer from lipid droplets to mitochondria through VPS13D-TSG101 interactions[J]. Nature Communications, 12(1): 1252. [115] Wilfling F, Haas J T, Walther T C, et al.2014. Lipid droplet biogenesis[J]. Current Opinion in Cell Biology, 29: 39-45. [116] Wilfling F, Wang H, Haas J T, et al.2013. Triacylglycerol synthesis enzymes mediate lipid droplet growth by relocalizing from the ER to lipid droplets[J]. Developmental Cell, 24(4): 384-399. [117] Wu L, Xu D, Zhou L, et al.2014. Rab8a-as160-mss4 regulatory circuit controls lipid droplet fusion and growth[J]. Developmental Cell, 30(4): 378-393. [118] Xu D, Li Y, Wu L, et al.2018. Rab18 promotes lipid droplet (LD) growth by tethering the ER to LDS through snare and NRZ interactions[J]. The Journal of Cell Biology, 217(3): 975-99. [119] Xu N, Zhang S O, Cole R A, et al.2012. The FATP1-DGAT2 complex facilitates lipid droplet expansion at the ER-lipid droplet interface[J]. The Journal of Cell Biology, 198(5): 895-911. [120] Yen C L, Stone S J, Koliwad S, et al.2008. Thematic review series: Glycerolipids. Dgat enzymes and triacylglycerol biosynthesis[J]. Journal of Lipid Research, 49(11): 2283-2301. [121] Young P A, Senkal C E, Suchanek A L, et al.2018. Long-chain ACYL-CoA synthetase 1 interacts with key proteins that activate and direct fatty acids into niche hepatic pathways[J]. The Journal of Biological Chemistry, 293(43): 16724-16740. [122] Zanghellini J, Wodlei F, von Grunberg H H.2010. Phospholipid demixing and the birth of a lipid droplet[J]. Journal of Theoretical Biology, 264(3): 952-961. [123] Zhou L, Yu M, Arshad M, et al.2018. Coordination among lipid droplets, peroxisomes, and mitochondria regulates energy expenditure through the CIDE-ATGL-PPARα pathway in adipocytes[J]. Diabetes, 67(10): 1935-1948. |
|
|
|