|
|
MAX1 Gene Cloning and Its Response to High Temperature Stress in Green Onions (Allium fistulosum) |
ZHANG Yu-Chen1,2, BAI Mi-Feng1,2, XU Huan-Huan2, XING Jia-Yi2, ZHOU Xu-Yang2, LIU Le-Cheng1,*, WANG Yong-Qin2,* |
1 College of Horticulture, Yangtze University, Jingzhou 434025, China; 2 Institute of Vegetables, Beijing Academy of Agriculture and Forestry Sciences/State Key Laboratory of Vegetable Biological Breeding/National Engineering Technology Research Center/Beijing Key Laboratory of Vegetable Germplasm Improvement/Key Laboratory of Urban Agriculture in North China, Ministry of Agriculture and Rural Affairs, Beijing 100097, China |
|
|
Abstract More axillary growth 1 (MAX1) is a key gene in the strigolactone synthesis pathway, which plays an important role in the tillering regulation of green onions (Allium fistulosum) and resistance to adversity stress. In this study, AfMAX1 gene (GenBank No. AfisC2G04224) was cloned from green onions, and bioinformatics analysis, subcellular localization, tissue expression patterns, and high-temperature stress response analysis were carried out. The results showed that the CDS of AfMAX1 was 1 545 bp long, encoded 514 amino acids, and had a relative molecular weight of 58.55 kD. AfMAX1 was a hydrophilic protein with no signal peptide and transmembrane domain. Protein sequence comparison analysis showed that MAX1 was conserved in multiple species. Subcellular localization results showed that AfMAX1 might be localized in the cytoplasm and nucleus of Nicotiana benthamiana. Expression pattern analysis showed that AfMAX1 had the highest expression level in the leaf sheath, followed by in the roots; The expression level of AfMAX1 significantly increased after 12 h of high temperature stress (P<0.01). The above results indicate that AfMAX1 could respond to high temperature stress, which might help enhance plant tillering regulation and heat tolerance. This study provides basic data for in-depth exploration of the molecular mechanisms of green onion plant type regulation and abiotic stress resistance.
|
Received: 29 August 2023
|
|
Corresponding Authors:
* lchliu18@yangtzeu.edu.can; wangyqly@163.com
|
|
|
|
[1] 高馨怡, 陈皓, 程方, 等. 2021. 苹果MAX1基因的克隆和表达及启动子分析[J]. 西北植物学报, 41(1): 29-36. (Gao X Y, Chen H, Chen F, et al.2021. Expression and promoter analysis of the MAX1 gene in Malus domestica[J]. Acta Botanica Boreali Occidentalia Sinca, 41(1): 29-36.) [2] 赖叶林, 贺盈, 李欣欣, 等. 2020. 一种植物原生质体分离与顺势转化的方法[J]. 植物生理学报, 56(4): 895-903. (Lai Y L, He Y, Li X X, et al.2020. A method for plant protoplast isolation and homeopathic transformation[J]. Plant Physiology, 56(4): 895-903.) [3] 李国防. 2018. 苹果MAX2基因介导独脚金内酯信号调控腋芽萌发的功能研究[D]. 硕士学位论文, 西北农林科技大学, 导师: 韩明玉, pp. 57-59. (Li G F.2018. Functional study of MAX2 gene on the regulation of axillary budtgrowth by mediating strigolactone signaling in malus[D]. Thesis for M.S., Northwest A&F University, Supervisor: Han M Y, pp. 57-59.) [4] 李学勇, 钱前, 李家洋. 2003. 水稻分蘖的分子机理研究[J]. 中国科学院院刊, 9(4): 294-296. (Li X Y, Qian J, Li J Y.2003. Progress in elucidating the molecular mechanism of rice tillering[J]. Bulletin of Chinese Academy of Sciences, 9(4): 294-296.) [5] 李亚栋, 张芊, 孙学辉, 等. 2009. 植物分枝发育的调控机制[J]. 中国农业科技导报, 11(4): 1-9. (Li Y D, Zhang Q, Sun X H, et al.2009. Mechanism for controlling plant branching development[J]. Journal of Agricultural Science and Technology, 11(4):1-9.) [6] 刘丛丛. 2017. 生长素及独脚金内酯通过细胞分裂素调控番茄侧枝生长发育的机制研究[D]. 硕士学位论文, 浙江大学, 导师: 喻景权, pp. 53-57. (Liu C C.2017. The mechanisms of auxin and strigolactone controllateral branching outgrowth through cytokinin in tomato plants[D]. Thesis for M.S., Zhejiang University, Supervisor: Yu J Q, pp. 53-57.) [7] 王秀梅, 梁越洋, 李玲, 等. 2015. OsMAX1a, OsMAX1e通过参与独角金内酯的合成调控水稻分蘖[J]. 中国水稻科学, 29(3): 223-231. (Wang X M, Liang Y Y, Li L, et al.2015. OsMAX1a and OsMAX1e, biosynthesis of strigolactones, regulate rice tillering[J]. Chinese Journal of Rice Scienc, 29(3): 223-231.) [8] 张琳. 2020. 甘蓝型油菜及其亲本物种独脚金内酯途径MAX1家族和D53家族的克隆和功能初鉴[D]. 硕士学位论文, 西南大学, 导师: 柴友荣, pp. 94-101. (Zhang L.2020. Cloning and preliminary functional analysis of MAX1 family and D53 family from strigolactone pathway in Brassica napus and its parent species[D]. Thesis for M.S., Southwest University, Supervisor: Chai Y R, pp. 94-101.) [9] 张宇辰, 徐欢欢. 2022. 大葱AfUFGT2基因的克隆及干旱胁迫下的表达分析[J]. 山西农业科学, 50(8): 1190-1196. (Zhang Y C, Xu H H.2022. Cloning and expression analysis of AfUFGT2 in Welsh onion (Allium fistulosum) under drought stress[J]. Journal of Shanxi Agricultural Sciences, 50(8): 1190-1196.) [10] Cardoso C, Zhang Y X, Jamil M, et al.2014. Natura variation of rice strigolactone biosynthesis is associated with the deletion of two MAX1 orthologs[J]. Proceedings of the National Academy of Sciences of the USA, 111(6): 2379-2384. [11] Chaabouni S, Jones B, Delalande C, et al.2009. Si-IAA3, a tomato Aux/IAA at the crossroads of auxin and ethylene signalling involved in differential growth[J]. Journal of Experimental Botany, 60(4): 1349-1362. [12] Cook C E, Whichard L P, Turner B, et al.1966. Germination of witchweed (Striga lutea Lour.): Isolation and properties of a potent stimulant[J]. Science, 154(3753): 1189-1190. [13] Deng W, Yan F, Liu M, et al.2012. Down regulation of SiIAA15 in tomato altered stemxylem development and production of volatile compounds in leaf exudates[J]. Plant Signaling and Behavior, 7(8): 911-913. [14] Domagalska M A, Leyser O.2011. Signal integration in the control of shoot branching[J]. Nature Reviews Molecularand Cellular Biology, 12(4): 211-221. [15] Drummond R S M, Sheehan H, Simons J L, et al.2012. The expression of petunia strigolactone pathway genes is altered as part of the endogenous developmental program[J]. Frontiers in Plant Science, 2: 115. [16] Ferguson B J, Beveridge C A.2009. Roles for auxin, cytokinin, and strigolactone in regulating shoot branching[J]. Plant Physiology, 149(4): 1929-1944. [17] Foo E, Turnbull C G, Beveridge C A.2001. Long distance signaling and the control of branching in the rms1 mutant of pea[J]. Plant Physiology, 126(1): 203-209. [18] Gomez R V, Fermas S, Brewer P B, et al.2008. Strigolactone inhibition of shoot branching[J]. Nature, 455(7210): 189-194. [19] Li X, Lu J H, Zhu X L, et al.2023. AtMYBS1 negatively regulates heat tolerance by directly repressing the expression of MAX1 required for strigolactone biosynthesis in Arabidopsis[J]. Plant Communications, 4(6): 100675. [20] Rameau C, Bertheloot J, Leduc N, et al.2015. Multiple pathways regulate shoot branching[J]. Frontiers in Plant Science, 5: 741. [21] Yoneyama K, Mori N, Sato T, et al.2018. Conversion of carlactone to carlactonoic acid is a conserved function of MAX1 homologs in strigolactone biosynthesis[J]. New Phytologist, 218(4): 1522-1533. [22] Wang B, Smith S M, Li J Y.2018. Genetic regulation of shoot architecture[J]. Annual Review of Plant Biology, 69: 437-468. [23] Ward S P, Leyser O.2004. Shoot branching[J]. Annual Review of Plant Biology, 7(1): 73-78. [24] Waters M T, Brewer P B, Bussell J D, et al.2012. The Arabidopsis ortholog of rice DWARF27 acts upstream of MAX1 in the control of plant deveopment by strigolactones[J]. Plant Physiology, 159(3): 1073-1085. [25] Umehara M, Hanada A, Magome H, et al.2010. Contribution of strigolactones to the inhibition of tiller bud outgrowth under phosphate deficiency in rice[J]. Plant Cell Physiology, 51(7): 1118-1126. [26] Umehara M, Hanada A, Yoshida S, et al.2008. Inhibition of shoot branching by new terpenoid plant hormones[J]. Nature, 455(7210): 195-200. [27] Xu L, Yuan K, Yuan M, et al.2020. Regulation of rice tillering by RNA directed DNA methylation at miniature inverted repeat transposable elements[J]. Molecular Plant, 13(6): 851-863. [28] Zhang J, Mazur E, Balla J, et al.2020. Strigolactones inhibit auxin feedback on PIN dependent auxin transport canalization[J]. Nature Communications, 11(1): 3508. [29] Zhang Y X, Cheng X, Wang Y T, et al.2018. The tomato MAX1 homolog, SlMAX1, is involved in the biosynthesis of tomato strigolactones from carlactone[J]. New Phytologist, 219(1): 297-309. [30] Zheng M, Zhang L, Tang M, et al.2020. Knockout of two BnaMAX1 homologs by CRISPR/Cas9 targeted mutagenesis improves plant architecture and increases yield in rapeseed (Brassica napus)[J]. Plant Biotechnology, 18(3): 644-654. |
|
|
|