|
|
Screening of qPCR Reference Genes in Chenopodium quinoa Under Cold, Drought Stresses and ABA, Fluridone Treatments |
LU Qiu-Wei, WANG Yuan-Yuan, XIN Yu-Xuan, DONG Su-Xuan, DENG Hai-Yan, GUO Fu-Ye* |
College of Biology, Xinzhou Normal University, Xinzhou 034000, China |
|
|
Abstract Real-time fluorescence quantitative PCR (qPCR) is a common way to study gene regulation at the transcriptional level, but its accuracy depends on the normalization of data by appropriate reference genes. In order to obtain the stable expression of reference genes in quinoa (Chenopodium quinoa) under cold, drought stresses and abscisic acid (ABA), fluridone (FLU)(ABA inhibitor) treatments, five common statistics tools (geNorm, Normfinder, BestKeeper, ΔCt method, RefFinder) were used to evaluate 9 candidate reference genes. The results showed that the optimal reference genes for cold or drought stress were triphosphate guanosinase 3 (GTP638) and 26S proteasome (PRN483), PRN483 and dipeptidyl carboxypeptidase (DCP894) for ABA or fluridone treatments, ubiquitin-conjugating enzyme E2 (UBC822) and PRN483 were the optimal reference genes for cold, drought stresses and ABA, fluridone treatments. Moreover, the stability of the housekeeping gene β-actin (ACT878) was the weakest when subjected to cold, drought stresses, and ABA or fluridone treatments. Additionally, the reliability of the suggested reference gene was confirmed by the expression levels of 9-cis-epoxycarotenoid dioxygenase (NCED185) and oxidoreductase (OXI802). The results showed that when UBC822 or PRN483 were used as reference gene, the expression patterns of NCED185 and OXI802 were comparable, and they could respond to cold, drought stresses and ABA, fluridone treatments. However, with ACT878 as the reference gene, NCED185 and OXI802 did not exhibit a response to the diverse treatments. This research provides appropriate internal reference genes for gene expression analysis of quinoa, as well as technical support to explore related molecular mechanisms.
|
Received: 22 May 2024
|
|
Corresponding Authors:
*fuyeguo163@163.com
|
|
|
|
[1] 贾冰晨, 王宇, 张东亮, 等. 2020. 藜麦内参基因筛选及盐胁迫相关基因表达分析[J]. 烟台大学学报, 33(03): 283-288. (Jia C B, Wang Y, Zhang D L, et al.2020. Screening of reference genes and analysis of gene expression under salt stress in Chenopodium quinoa[J]. Journal of Yantai University, 33(03): 283-288.) [2] 宋海娜, 吴心桐, 杨鲁豫, 等. 2023. 葱鳞葡萄孢菌诱导下韭菜RT-qPCR内参基因的筛选和验证[J]. 生物技术通报, 39(03): 101-115. (Song H N, Wu X T, Yang L Y, et al.2023. Selection and validation of reference genes for RT-qPCR in Allium tuberosum infected by Botrytis squamosa[J]. Biotechnology Bulletin, 39(03): 101-115.) [3] 王悦娟, 赵延蓉, 魏玉清. 2022. 不同温度条件下盐、碱和干旱胁迫对藜麦种子萌发的影响[J/OL]. 分子植物育种, 1-20. (Wang Y J, Zhao Y R, Wei Y Q.2022. Effects of salt, alkali and drought stress on seed germination of quinoa under different temperature conditions[J/OL]. Molecular Plant Breeding, 1-20.) [4] 解宇洁, 薛婧, 姜晓东, 等. 2024. 霜霉病菌胁迫下藜麦内参基因的筛选及其稳定性验证[J]. 福建农林大学学报, 53(02): 191-198. (Xie Y J, Xue J, Jiang X D, et al.2024. Screening of reference genes in Chenopodium quinoa under Peronospora variabilis stress and verification of theirstability[J]. Journal of Fujian Agriculture and Forestry University, 53(2): 191-198.) [5] 姚庆, 阿里别里根·哈孜太, 杨明花, 等. 2023. 藜麦种子对萌发温度的响应及低温胁迫萌发能力鉴定[J]. 新疆农业科学, 60(05): 1141-1149. (Yao Q, Aribelegan H, Yang M H, et al.2023. Response of quinoa seeds to germination temperature and identification of germination ability under low temperature stress[J]. Xinjiang Agricultural Sciences, 60(05): 1141-1149.) [6] 袁伟, 万红建, 杨悦俭. 2012. 植物实时荧光定量PCR内参基因的特点及选择[J]. 植物学报, 47(04): 427-436. (Yuan W, Wan H J, Yang Y J.2012. Characterization and selection of reference genes for real-time quantitative RT-PCR of plants[J]. Chinese Bulletin of Botany, 47(04): 427-436.) [7] 张晓玲, 袁加红, 何丽, 等. 2018. 云南省高海拔低温干旱山区藜麦种植技术探讨[J]. 安徽农业科学, 46(30): 45-46, 50. (Zhang X L, Yuan J H, He L, et al.2018. Discussion on the planting of buckwheat in arid mountain area with high altitude and low temperature in Yunnan province[J]. Journal of Anhui Agricultural Sciences, 46(30): 45-46, 50.) [8] 张玉芳, 赵丽娟, 曾幼玲. 2014. 基因表达研究中内参基因的选择与应用[J]. 植物生理学报, 50(08): 1119-1125. (Zhang Y F, Zhao L J, Zeng Y L.2014. Selection and application of reference genes for gene expression studies[J]. Plant Physiology Journal, 50(08): 1119-1125.) [9] Amorim L L B, Ferreira-Neto J R C, Bezerra-Neto J P, et al.2018. Cowpea and abiotic stresses: Identification of reference genes for transcriptional profiling by qPCR[J]. Plant Methods, 14: 88. [10] Andersen C L, Jensen J L, Ørntoft T F.2004. Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets[J]. American Association for Cancer Research, 64(15): 5245-5250. [11] Cheng Y, Bian W, Pang X, et al.2017. Genome-wide identification and evaluation of reference genes for quantitative RT-PCR analysis during tomato fruit development[J]. Frontiers in Plant Science, 8: 1440. [12] Czechowski T, Stitt M, Altmann T, et al.2005. Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis[J]. Plant Physiology, 139(1): 5-17. [13] Davies W J, Zhang J H.1991. Root signals and the regulation of growth and development of plants in drying soil[J]. Annual Review of Plant Biology, 42(1): 55-76. [14] Fiallos-Jurado J, Pollier J, Moses T, et al.2016. Saponin determination, expression analysis and functional characterization of saponin biosynthetic genes in Chenopodium quinoa leaves[J]. Plant Science, 250: 188-197. [15] Garg R, Sahoo A, Tyagi A K, et al.2010. Validation of internal control genes for quantitative gene expression studies in chickpea (Cicer Arietinum L.)[J]. Biochemical and Biophysical Research Communications, 396(2): 283-288. [16] Gutierrez L, Mauriat M, Guénin S, et al.2008. The lack of a systematic validation of reference genes: A serious pitfall undervalued in reverse transcription-polymerase chain reaction (RT-PCR) analysis in plants[J]. Plant Biotechnology Journal, 6(6): 609-618. [17] Góraj-Koniarska J, Saniewski M, Kosson R, et al.2017. Effect of fluridone on some physiological and qualitative features of ripening tomato fruit[J]. Acta Biologica Cracoviensia Series Botanica, 59(2): 41-49. [18] Hao X, Horvath D, Chao W, et al.2014. Identification and evaluation of reliable reference genes for quantitative real-time PCR analysis in tea plant (Camellia sinensis (L.) O. Kuntze)[J]. International Journal of Molecular Sciences, 15(12): 22155-22172. [19] He Y, Yan H, Hua W, et al.2016. Selection and validation of reference genes for quantitative real-time PCR in Gentiana macrophylla[J]. Frontiers in Plant Science, 7: 945. [20] Hussain H A, Hussain S, Khaliq A, et al.2018. Chilling and drought stresses in crop plants: Implications, cross talk, and potential management opportunities[J]. Frontiers in Plant Science, 9: 393. [21] Jarvis D E, Ho Y S, Lightfoot D J, et al.2017. The genome of Chenopodium quinoa[J]. Nature, 542(7641): 307-312. [22] Lauralie M P, Sylvain L, Jean-Francois H, et al.2016. Identification of reference genes for RT-qPCR data normalization in Cannabis sativa stem tissues[J]. International Journal of Molecular Sciences, 17(9): 1556. [23] Liang W, Zou X, Rebeca C L, et al.2018. Selection and evaluation of reference genes for qRT-PCR analysis in Euscaphis konishii Hayata based on transcriptome data[J]. Plant Methods, 14(1): 42. [24] Livak K J, Schmittgen T D.2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method[J]. Methods, 25(4): 402-408. [25] Maldonado-Taipe N, Patirange D S, Schmockel S M, et al.2021. Validation of suitable genes for normalization of diurnal gene expression studies in Chenopodium quinoa[J]. PLOS ONE, 16(3): e0233821. [26] Mao M, Xue Y, He Y, et al.2021. Validation of reference genes for quantitative real-time PCR normalization in Ananas comosus var. bracteatus during chimeric leaf development and response to hormone stimuli[J]. Frontiers in Genetics, 12: 716137. [27] Maroufi A, Bockstaele E V, Loose M D.2010. Validation of reference genes for gene expression analysis in chicory (Cichorium Intybus) using quantitative real-time PCR[J]. BMC Molecular Biology, 11: 15. [28] Nicot N, Hausman J F, Hoffmann L, et al.2005. Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress[J]. Journal of Experimental Botany, 56(421): 2907-2914. [29] Palakolanu S R, Dumbala S R, Kaliamoorthy S, et al.2016. Evaluation of sorghum (Sorghum bicolor (L.)) reference genes in various tissues and under abiotic stress conditions for quantitative real-time PCR data normalization[J]. Frontiers in Plant Science, 7: 529. [30] Pfaffl M W, Tichopad A, Prgomet C, et al.2004. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper-Excel-based tool using pair-wise correlations[J]. Biotechnology Letters, 26(6): 509-515. [31] Pombo M A, Ramos R N, Zheng Y, et al.2019. Transcriptome-based identification and validation of reference genes for plant-bacteria interaction studies using Nicotiana benthamiana[J]. Scientific Reports, 9(1): 1632. [32] Ruiz K B, Biondi S, Martínez E A, et al.2016. Quinoa - a model crop for understanding salt-tolerance mechanisms in halophytes[J]. Giornale Botanico Italiano, 150(2): 357-371. [33] Ruiz K B, Biondi S, Oses R, et al.2014. Quinoa biodiversity and sustainability for food security under climate change. A review[J]. Agronomy for Sustainable Development, 34(2): 349-359. [34] Sauter A, Davies W J, Hartung W.2001. The long-distance abscisic acid signal in the droughted plant: The fate of the hormone on its way from root to shoot[J]. Journal of Experimental Botany, 52(363): 1991-1997. [35] Sgamma T, Pape J, Massiah A, et al.2016. Selection of reference genes for diurnal and developmental time-course real-time PCR expression analyses in lettuce[J]. Plant Methods, 12: 21. [36] Silver N, Best S, Jiang J, et al.2006. Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR[J]. BMC Molecular Biology, 7(1): 1-9. [37] Sun Y, Liu F, Bendevis M, et al.2014. Sensitivity of two quinoa (Chenopodium quinoa Willd.) varieties to progressive drought stress[J]. Journal of Agronomy and Crop Science, 200(1): 12-23. [38] Vandesompele J, De Preter K, Pattyn F, et al.2002. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes[J]. Genome Biology, 3(7): RESEARCH0034.1-0034.11. [39] Wan Q, Chen S, Shan Z, et al.2017. Stability evaluation of reference genes for gene expression analysis by RT-qPCR in soybean under different conditions[J]. PLOS ONE, 12(12): e0189405. [40] Wang J, Chitsaz F, Derbyshire M, et al.2023. The conserved domain database in 2023[J]. Nucleic Acids Research, 51(D1): D384-D388. [41] Wang X, Wu Z, Bao W, et al.2019. Identification and evaluation of reference genes for quantitative real-time PCR analysis in Polygonum cuspidatum based on transcriptome data[J]. BMC Plant Biology, 19(1): 498. [42] Xie F, Wang J, Zhang B.2023. RefFinder: A web-based tool for comprehensively analyzing and identifying reference genes[J]. Functional & Integrative Genomics, 23(2): 125. [43] Xie F, Xiao P, Chen D, et al.2012. miRDeepFinder: A miRNA analysis tool for deep sequencing of plant small RNAs[J]. Plant Molecular Biology, 80(1): 75-84. [44] Xu L, Xu H, Cao Y, et al.2017. Validation of reference genes for quantitative real-time PCR during bicolor tepal development in Asiatic hybrid lilies (Lilium spp.)[J]. Frontiers in Plant Science, 8: 669. [45] Xiong L, Zhu J.2003. Regulation of abscisic acid biosynthesis[J]. Plant Physiology, 133(1): 29-36. [46] Yang H, Liu J, Huang S, et al.2014. Selection and evaluation of novel reference genes for quantitative reverse transcription PCR (qRT-PCR) based on genome and transcriptome data in Brassica napus L[J]. Gene, 538(1): 113-122. [47] Yasui Y, Hirakawa H, Oikawa T, et al.2016. Draft genome sequence of an inbred line of Chenopodium quinoa, an allotetraploid crop with great environmental adaptability and outstanding nutritional properties[J]. DNA Research, 23(6): 535-546. |
|
|
|