|
|
Exploring the Anti-inflammatory Effects of Peimine and Peiminine on Macrophage Raw264.7 Based on LPS Inflammation Model |
JIN Ze-Lan1,*, DONG Yun-Zhe1,2,*, LI Qing1, DONG Li-Li1, GUO Hua-Ru3, YAN Can-Long1, WANG Zhong-Hua1,** |
1 College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China; 2 School of Life Sciences, Ningxia University, Yinchuan 750000, China; 3 Ningbo Agricultural Technology Extension Station, Ningbo 315100, China |
|
|
Abstract Peimine and Peiminine are representative alkaloid medicinal component in the lily family herb Fritillaria thunbergii. They play an important role in the anti-inflammatory effect of F. thunbergii. In order to further investigate the anti-inflammatory effects of these 2 types of alkaloids at the cellular level, this study used lipopolysaccharide (LPS) induced Raw264.7 cells as an inflammatory model, Griess, ELISA, Western blot and qRT-PCR were used to analyze the effects of peimine and peiminine on LPS-induced secretion of pro-inflammatory factors nitric oxide (NO), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), IL-1β, nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in Raw264.7 cells, the results showed that both peimine and peiminine could inhibit the differentiation of Raw264.7 cells and reduce the pseudopodia produced by LPS stimulation, NO, TNF-α, IL-6 and IL-1β in Raw264.7 cell supernatant of medium and high dose groups of peimine and peiminine significantly decreased (P<0.05, P<0.01). Peimine and peiminine inhibited the expression of iNOS and COX-2 protein in Raw264.7 cells, and the inhibition of peiminine on iNOS protein was higher than that of peiminine on COX-2 protein, the inhibitory effect of peiminine a was higher than that of peiminine. The expression of IL-6 and IL-1β in Raw264.7 cells was significantly decreased by both peimine and peiminine. In conclusion, both peimine and peiminine have good anti-inflammatory effect, which provides some data support for the treatment of inflammation by alkaloids.
|
Received: 06 September 2023
|
|
Corresponding Authors:
** wang1972@zwu.edu.cn
|
About author:: * These authors contributed equally to this work |
|
|
|
[1] 蔡颖, 商玉萍, 高学坤. 2017. 苹果多酚对脂多糖刺激的RAW264.7细胞COX-2/PGE2iNOS/NO表达的研究[J]. 安徽医药, 21(11): 1975-1979. (Cai Y, Shang Y P, Gao X K.2017. Effect of apple polyphenols on COX-2/PGE2 and iNOS/NO expression in LPS-stimulated RAW264. 7 cells[J]. Anhui Medical and Pharmaceutical Journal, 21(11): 1975-1979.) [2] 曹谨玲, 陈剑杰, 李丽娟, 等. 2021. 艾叶挥发油对脂多糖诱导的巨噬细胞的抗炎作用[J]. 动物营养学报, 33(06): 3479-3486. (Cao J L, Chen J J, Li L J, et al.2021. Effects of Artemisia argyi essential oils on anti-inflammatory of macrophages induced by lipopolysaccharide[J]. Chinese Journal of Animal Nutrition, 33(06): 3479-3486.) [3] 程斌, 周爱珍, 彭昕, 等. 2020. 浙贝母UPLC-Q-TOF-MS/MS指纹图谱的建立及其抗炎质量标志物的分析[J]. 中国药房, 31(17): 2129-2135. (Cheng B, Zhou A Z, Peng X, et al.2020. Establishment of UPLC-Q-TOF-MS/MS fingerprint of Fritillaria thunbergii and analysis of antiinflammatory quality markers[J]. China Pharmacy, 31(17): 2129-2135.) [4] 符佳, 陈加容, 胡樱凡, 等. 2020. 紫花地丁提取物对LPS诱导RAW 264.7细胞的体外抗炎作用[J]. 成都大学学报(自然科学版), 39(02): 143-147, 175. (Fu J, Chen J R, Hu Y F, et al.2020. Anti-inflammatory effect of Viola yedoensis extracts on lps-stimulated RAW 264. 7 cells[J]. Journal of Chengdu University, 39(02): 143-147, 175.) [5] 郭海, 吉福志, 赵晓峰, 等. 2016. 贝母素乙对肺纤维化大鼠肺组织MEK1/2、ERK1/2及其磷酸化的影响[J]. 南京中医药大学学报, 32(02): 170-175. (Guo H, Ji F Z, Zhao X F, et al.2016. Effect of peiminine on MEK1/2,ERK1/2 and the phosphorylatioin in lung tissue of pulmonary fibrosis in rats[J]. Journal of Nanjing University of Traditional Chinese Medicine, 35(18): 5089-5091.) [6] 何琴慧, 姜雨辰, 王文玲, 等. 2023. 茶藤生物碱成分的分离鉴定及抗肿瘤活性研究[J]. 中草药, 54(03): 704-710. (He Q H, Jiang Y C, Wang W L, et al.2023. Isolation and identification of alkaloids from Melodinus magnificus and their antitumor activity[J]. Chinese Traditional and Herbal Drugs, 54(03): 704-710.) [7] 李静静, 王福玲, 李嘉欣, 等. 2022. 基于网络药理学分析苦豆子生物碱抗肺癌的作用机制[J]. 特产研究, 44(05): 43-48. (Li J J, Wang F L, Li J X, et al.2022. Anti-lung cancer mechanism of alkaloids in Sophora alopecuroides based on network pharmacology[J]. Special Wild Economic Animal and Plant Research, 44(05):4 3-48.) [8] 孙丽芳, 周雪, 汪杰, 等. 2021. 紫茎泽兰中泽兰酮类成分的抗炎活性研究[J]. 天然产物研究与开发, 33(04): 592-597, 606. (Sun L F, Zhou X, Wang J, et al.2021. Study on the anti-inflammatory activity of euptox A and 9-oxoageraphorone in Eupatorium adenophorum Spreng[J].Natural Product Research and Development, 33(04):592-597, 606.) [9] 王云飞, 顾政一, 何承辉. 2015. 贝母属植物化学成分与药理活性研究进展[J]. 西北药学杂志, 30(04): 436-440. (Wang Y F, Gu Z Y, He C H.2015. Research advances on chemical constituents in Fritillaria L. and their pharmacological activities[J]. Northwest Pharmaceutical Journal, 30(04): 436-440.) [10] 张玉人, 林洪生, 张英. 2014. 贝母素甲、贝母素乙对4T1乳腺癌细胞炎性微环境的干预调节用[J]. 中国中医基础医学杂志, 20(11): 1504-1506. (Zhang Y R, Lin H S, Zhang Y.2014. Intervention effect of Peimine,peiminine on the inflammatory microenvironment of 4T1 breast cancer cell[J]. Chinese Journal of Basic Medicine in Traditional Chinese Medicine, 20(11): 1504-1506.) [11] 朱梦博. 2021. 贝母素乙通过NFATc1和NF-κB通路抑制由RANKL诱导的破骨细胞分化[J]. 硕士学位论文, 山西医科大学, 导师: 王少伟, pp. 10-19. (Zhu M B.Peiminine suppresses RANKL-induced osteoclastogenesis by inhibiting the NFATc1 and NF-κB signaling pathway[J]. Thesis for M. S., Shanxi Medical University, Supervisor: Wang S W, pp. 10-19.) [12] 朱晓琳, 陈渊, 赵伟. 2018. 贝母素甲药理作用的研究进展[J]. 药物生物技术, 25(06): 561-564. (Zhu X L,Chen Y, Zhao W.2018. Progress in the study of pharmacological effects of peimine[J]. Pharmaceutical Biotechnology, 25(6): 561-564.) [13] Chen K, Lv Z T, Zhou C H, Liang S, et al.2019. Peimine suppresses interleukin-1β-induced inflammation via MAPK downregulation in chondrocytes.[J]. International journal of molecular medicine,43(5). [14] Delgado-Vélez M, Lasalde-Dominicci J A.2018. The cholinergic anti-inflammatory response and the role of macrophages in HIV-induced inflammation[J]. International Journal of Molecular Sciences, 19(5): 1473. [15] Gong Q, Li Y W, Ma W J, et al.2018. Peiminine protects against lipopolysaccharide-induced mastitis by inhibiting the AKT/NF-kB, ERK1/2 and p38 signaling pathways[J]. International Journal of Molecular Sciences, 19(9): 2637. [16] Karpuzoglu E, Ahmed S A.2006. Estrogen regulation of nitric oxide and inducible nitric oxide synthase (iNOS) in immune cells: Implications for immunity, autoimmune diseases, and apoptosis[J]. Nitric Oxide, 15(3): 177-186. [17] Kaushalya C M, Soon-Do Y, Jae-Young J.2023. Blue mussel (Mytilus edulis) hydrolysates attenuate oxidized-low density lipoproteins (ox-LDL)-induced foam cell formation, inflammation, and oxidative stress in RAW264.7 macrophages[J]. Process Biochemistry, 134(P1): 131-140. [18] Kim E J, Yoon Y P, Woo K W, et al.2016. Verticine, ebeiedine and suchengbeisine isolated from the bulbs of Fritillaria thunbergii Miq. inhibited the gene expression and production of MUC5AC mucin from human airway epithelial cells[J]. Phytomedicine, 23(2): 95-104. [19] Kindt N, Journe F, Laurent G, et al.2016. Involvement of macrophage migration inhibitory factor in cancer and novel therapeutic targets[J]. Oncology Letters, 12(4): 2247-2253. [20] Riabov V, Gudima A, Wang N, et al.2014. Role of tumor associated macrophages in tumor angiogenesis and lymphangiogenesis[J]. Frontiers in Physiology, 5: 75. [21] Romero, Kevin J, Galliher, et al.2018. Radicals in natural product synthesis[J]. Chemical Society reviews, 47(21): 7851-7866. [22] Rueda C M, Presicce P, Jackson C M, et al.2016. Lipopolysaccharide-induced chorioamnionitis promotes IL-1-dependent inflammatory FOXP3+ CD4+ T cells in the fetal rhesus macaque[J]. The Journal of Immunology, 196(9): 3706-3715. [23] Tang Q Q,Wang Y F, Ma L J, et al.2018. Peiminine serves as an adriamycin chemosensitizer in gastric cancer by modulating the EGFR/FAK pathway[J]. Oncology Reports, 39(3). [24] Torres M I, Rios A.2008. Current view of the immunopathogenesis in inflammatory bowel disease and its implications for therapy[J]. World Journal of Gastroenterology, 14(13): 1972. [25] Wang X C, Jiang W, Pan K X, et al.2023. Melatonin induces RAW264.7 cell apoptosis via the BMAL1/ROS/MAPK-p38 pathway to improve postmenopausal osteoporosis[J]. Bone & Joint Research, 12(11): 677-690. [26] Wu F, Tian M, Sun Y, et al.2022. Efficacy, chemical composition, and pharmacological effects of herbal drugs derived from Fritillaria cirrhosa D. Don and Fritillaria thunbergii Miq[J]. Frontiers in Pharmacology, 13: 985935. [27] Xu G, Feng S, Sun R, et al.2022. Systematic analysis strategy based on network pharmacology to investigate the potential mechanism of Fritillaria thunbergii Miq. against idiopathic pulmonary fibrosis[J]. Evidence-Based Complementary and Alternative Medicine, 2022(37): 2996878. [28] Zheng Z, He Q S, Xu L T, et al.2016. The peiminine stimulating autophagy in human colorectal carcinoma cells via AMPK pathway by SQSTM1[J]. Open Life Sciences, 11(1): 358-366. |
|
|
|