|
|
Research Progress on Structural Characteristics and Preparation of Nanobodies |
KONG Jing, ZHENG Nan, WANG Jia-Qi, ZHAO Sheng-Guo* |
State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China |
|
|
Abstract Nanobodies are small molecules composed of only heavy chains with specific recognition of antigens, which have broad application prospects. In this paper, three different antibody subtypes in camels (Camelus) were introduced, and the similarities and differences between traditional antibodies and nanobodies in the types and positions of disulfide bonds, the composition of skeleton regions, and complementary determining regions were revealed. The characteristics of nanobodies, such as simple production, strong specificity, high stability, and high solubility, were discussed. The screening and expression methods of nanobodies were expounded, that is, phage display, yeast two-hybrid and other technologies can be used to screen and obtain specific nanobodies. Because of its simple structure, it can be expressed in Escherichia coli and yeast (Saccharomyces) and other organisms, to better study its function. This review provides a theoretical basis for the development and application of nanobodies in the future.
|
Received: 19 June 2023
|
|
Corresponding Authors:
* zhaoshengguo@caas.cn
|
|
|
|
[1] 邓文月, 张维达, 孙慧敏, 等. 2022. 纳米抗体特性及其在冠状病毒研究中的应用[J]. 生物技术, 32(01): 126-133. (Deng W Y, Zhang W D, Sun H M, et al.2022. Characteristics of nanobody and its applications on study of coronaviruses[J]. Biotechnology, 32(01): 126-133.) [2] 何晓婷, 董洁娴, 沈兴, 等. 2022. 纳米抗体的稳定性及其结构基础研究进展[J]. 生物化学与生物物理进展, 49(06): 1004-1017. (He X T, Dong J X, Shen X, et al.2022. Advances on the relationship between stability and structure of nanobody[J]. Progress in Biochemistry and Biophysics, 49(06): 1004-1017.) [3] 胡湘云, 曹艳红, 吕玲燕, 等. 2023. 纳米抗体及其在兽医领域的研究现状[J]. 畜牧兽医学报, 54(08): 3164-3172. (Hu X Y, Cao J X, Shen X, et al.2023. Nanobodies and their research status in veterinary field[J]. Acta Veterinaria et Zootechnica Sinica, 54(08): 3164-3172.) [4] 李光琪. 2021. 驼源天然纳米抗体噬菌体展示文库的构建及抗CD19纳米抗体的筛选和验证[D]. 硕士学位论文, 宁夏医科大学, 导师: 徐广贤, pp. 52-53. (Li G Q.2021. Construcction of Camelidae natural nanobody phage display library and screening for anti-CD19 nanobody and verification[D]. Thesis for M.S., Ningxia Medical University, Supervisor: Xu G X, pp.52-53.) [5] 李可亭. 2021. 不同表达系统表达重组FGF-2纳米抗体的比较研究[D]. 硕士学位论文, 暨南大学, 导师: 熊盛, pp. 65-69. (Li K T.2021. Comparative study on the expression of recombinant FGF-2 nanobodies in different expression systems[D]. Thesis for M.S., Jinan University, Supervisor: Xiong S, pp. 65-69.) [6] 孙维汉. 2018. 两种纳米抗体在不同表达系统中表达的比较研究[D]. 硕士学位论文, 吉林大学, 导师: 孙非, pp. 55-58. (Sun W Q.2018. Comparative study on the expression of two nanobodies in different expression systems[D]. Thesis for M.S., Jilin University, Supervisor: Sun F, pp. 55-58.) [7] 肖宇辰, 吉日木图, 郭文婕等. 2023纳米抗体靶向肺癌诊疗的研究进展[J]. 中国免疫学杂志, 39(01): 195-203. (Xiao Y C, Ji R M T, Guo W J, et al.2023. Research progress in targeted diagnosis and treatment of lung cancer by nanoantibodies[J]. Chinese Journal of Immunology, 39(01): 195-203.) [8] 朱光, 王译晨, 宋莎莎, 等. 2021. 纳米抗体筛选和表达技术研究进展[J]. 中国动物检疫, 38(07): 79-87. (Zhu G, Wang Y C, Song S S, et al.2021. Research progress on the screening and expression of nanobody[J]. China Animal Health Inspection, 38(07): 79-87.) [9] Abulrob A, Sprong H, Henegouwen, et al.2005. The blood-brain barrier transmigrating single domain antibody: Mechanisms of transport and antigenic epitopes in human brain endothelial cells[J]. Journal of Neurochemistry, 95(4): 1201-1214. [10] Akazawa-Ogawa Y, Takashima M, Lee Y H, et al.2014. Heat-induced irreversible denaturation of the camelid single domain VHH antibody is governed by chemical modifications[J]. Journal of Biological Chemistry, 289(22): 15666-15679. [11] Annamaria S, Jwala P S, Menotti R.2020. Evolution of escherichia coli expression system in producing antibody recombinant fragments[J]. International Journal of Molecular Sciences, 21(17): 6324. [12] Bakherad H, Mousavi G S, Rasooli I, et al.2013. In vivo neutralization of botulinum neurotoxins serotype E with heavy-chain camelid antibodies (VHH)[J]. Molecular Biotechnology, 55(2): 159-167. [13] Bessette P, H.1999. Efficient folding of proteins with multiple disulfide bonds in the Escherichia coli cytoplasm[J]. Proceedings of the National Academy of Sciences of the USA, 96(24): 13703-13708. [14] Billen B, Vincke C, Hansen R, et al.2017. Cytoplasmic versus periplasmic expression of site-specifically and bioorthogonally functionalized nanobodies using expressed protein ligation[J]. Protein Expression and Purification, 133: 25-34. [15] Blanc M R, Anouassi A, Ahmed Abed M, et al.2009. A one-step exclusion-binding procedure for the purification of functional heavy-chain and mammalian-type -globulins from camelid sera[J]. Biotechnology and Applied Biochemistry, 54(4): 207-212. [16] Chen S, Khong N V, Masatoshi N.2002. Adaptive evolution of variable region genes encoding an unusual type of immunoglobulin in camelids[J]. Molecular Biology & Evolution 19(3): 205-215. [17] Conrath K E, Wernery U, Muyldermans S, et al.2003. Emergence and evolution of functional heavy-chain antibodies in Camelidae[J]. Developmental and Comparative Immunology, 27(2): 87-103. [18] Daley-Bauer L P, Purdy S R, Smith M C, et al.2010. Contributions of conventional and heavy-chain IgG to immunity in fetal, neonatal, and adult alpacas[J]. Clinical & Vaccine Immunology, 17(12): 2007-2015. [19] Daley L P, Gagliardo L F, Duffy M S, et al.2005. Application of monoclonal antibodies in functional and comparative investigations of heavy-chain immunoglobulins in new world camelids[J]. Clinical and Vaccine Immunology, 12(3): 380-386. [20] Daley L P, Kutzler M A, Bennett B W, et al.2009. Effector functions of camelid heavy-chain antibodies in immunity to West Nile virus[J]. Clinical and Vaccine Immunology, 17(2): 239-246. [21] Dan Z, Olson M A, Anderson G P, et al.2014. Evaluation of disulfide bond position to enhance the thermal stability of a highly stable single domain antibody[J]. PLOS ONE, 9(12): e115405. [22] Dumoulin M, Conrath K, Meirhaeghe A V, et al.2002. Single-domain antibody fragments with high conformational stability[J]. Protein Science, 11(3): 500-515. [23] Filippa F, Nick D, Mireille P, et al.2013. Surface display of a single-domain antibody library on Gram-positive bacteria[J]. Cellular and Molecular Life Sciences, 70(6): 1081-1093. [24] Fu X, Gao X, He S, et al.2013. Design and selection of a camelid single-chain antibody yeast two-hybrid library produced de novo for the Cap protein of Porcine circovirus Type 2 (PCV2)[J]. PLOS ONE, 13(4): e0196619. [25] Gao X, Hu X, Tong L, et al.2016. Construction of a camelid VHH yeast two-hybrid library and the selection of VHH against haemagglutinin-neuraminidase protein of the Newcastle disease virus[J]. BMC Veterinary Research, 12(1): 39. [26] Ghahroudi M A, Desmyter A, Wyns L, et al.1997. Selection and identification of single domain antibody fragments from camel heavy-chain antibodies[J]. FEBS Letters, 414(3): 521-526. [27] Hagihara Y, Mine S, Uegaki K.2007. Stabilization of an immunoglobulin fold domain by an engineered disulfide bond at the buried hydrophobic region[J]. Journal of Biological Chemistry, 282(50): 36489-36495. [28] Hamers-Casterman C, Atarhouch T, Muyldermans S, et al.1993. Naturally occurring antibodies devoid of light chains[J]. Nature, 363(6428): 446. [29] Harmsen M M, Haard H J D.2007. Properties, production, and applications of camelid single-domain antibody fragments[J]. Applied Microbiology & Biotechnology, 77(1): 13-22. [30] Harmsen M M, Ruuls R C, Nijman I J, et al.2000. Llama heavy-chain V regions consist of at least four distinct subfamilies revealing novel sequence features[J]. Molecular Immunology, 37(10): 579-590. [31] Harmsen M M, Niewold T, Solt C v B, et al.2006. Selection and optimization of proteolytically stable llama single-domain antibody fragments for oral immunotherapy[J]. Applied microbiology and biotechnology, 72(3): 544-551. [32] Haurum S J.2006. Recombinant polyclonal antibodies: The next generation of antibody therapeutics?[J]. Drug Discovery Today, 11(13-14): 655-660. [33] Hoogenboom H R.2005. Selecting and screening recombinant antibody libraries[J]. Nature Biotechnology, 23(9): 1105-1116. [34] Hsieh C W, Lan J L, Meng Q, et al.2007. Eosinophil apoptosis induced by fungal immunomodulatory peptide-fve via reducing IL-5α receptor[J]. Journal of the Formosan Medical Association, 106(1): 36-43. [35] Hussack G, Hirama T, Ding W, et al.2017. Engineered single-domain antibodies with high protease resistance and thermal stability[J]. PLOS ONE, 6(11): e28218. [36] Ivana J, Serge M.2020. The therapeutic potential of nanobodies[J]. BioDrugs , 34(1): 11-26. [37] Jeffrey Y J K, Zhe S, Yufei X, et al.2023. Nanobodies: Robust miniprotein binders in biomedicine[J]. Advanced Drug Delivery Reviews, 195: 114726. [38] Ji X, Lu W, Zhou H, et al.2013. Covalently dimerized Camelidae antihuman TNFa single-domain antibodies expressed in yeast Pichia pastoris show superior neutralizing activity[J]. Applied Microbiology & Biotechnology, 97(19): 8547-8558. [39] Jobling S A, Jarman C, Teh M-M, et al.2003. Immunomodulation of enzyme function in plants by single-domain antibody fragments[J]. Nature Biotechnology, 21(1): 77-80. [40] Ko K M, Leung H Y.2007. Enhancement of ATP generation capacity, antioxidant activity and immunomodulatory activities by Chinese Yang and Yin tonifying herbs[J]. Chinese Medicine, 2(1): 3. [41] Kunz P, Zinner K, Mücke N, et al.2018. The structural basis of nanobody unfolding reversibility and thermoresistance[J]. Scientific Reports, 8(1): 7934. [42] Lauwereys M, Arbabi G M, Desmyter A, 1998. Potent enzyme inhibitors derived from dromedary heavy-chain antibodies[J]. The EMBO Journal, 17(13): 3512-3520. [43] Li T, Vandesquille M, Koukouli F, et al.2016. Camelid single-domain antibodies: A versatile tool for in vivo imaging of extracellular and intracellular brain targets[J]. Journal of Controlled Release, 243: 1-10. [44] Lonberg N.2008. Fully human antibodies from transgenic mouse and phage display platforms[J]. Current Opinion in Immunology, 20(4): 450-459. [45] Maass D R, Sepulveda J, Pernthaner A, et al.2007. Alpaca (Lama pacos) as a convenient source of recombinant camelid heavy chain antibodies (VHHs)[J]. Journal of Immunological Methods, 324(1-2): 13-25. [46] Maggi M, Scotti C.2017. Enhanced expression and purification of camelid single domain VHH antibodies from classical inclusion bodies[J]. Protein Expression & Purification, 136: 39-44. [47] Mendoza M N, Jian M, King M T, et al.2020. Role of a noncanonical disulfide bond in the stability, affinity, and flexibility of a VHH specific for the Listeria virulence factor In1B[J]. Protein Science, 29(4): 1004-1017. [48] Muyldermans S.2013. Nanobodies: Natural single-domain antibodies[J]. Annual Review of Biochemistry, 82(1): 775-797. [49] Muyldermans S, Atarhouch T, Saldanha J,et al.1994. Sequence and structure of VH domain from naturally occurring camel heavy chain immunoglobulins lacking light chains[J]. Protein Engineering Design and Selection, 7(9): 1129-1135. [50] Olichon A, Surrey T.2007. Selection of genetically encoded fluorescent single domain antibodies engineered for efficient expression in Escherichia coli [J]. Journal of Biological Chemistry, 282(50): 36314-36320. [51] Paul J C, Lazar A G, 2018. Next generation antibody drugs: Pursuit of the 'high-hanging fruit'[J]. Nature Reviews Drug discovery, 17(3): 197-223. [52] Reiter Y, Brinkmann U, Kreitman R J, et al.1994. Stabilization of the Fv fragments in recombinant immunotoxins by disulfide bonds engineered into conserved framework regions[J]. Biochemistry, 33(18): 5451-5459. [53] Revets H, De Baetselier P, Muyldermans S.2005. Nanobodies as novel agents for cancer therapy[J]. Expert Opinion on Biological Therapy, 5(1): 111-124. [54] Revilla-I-Domingo R, Bilic I, Vilagos B,et al.2012. The B‐cell identity factor Pax5 regulates distinct transcriptional programmes in early and late B lymphopoiesis[J].EMBO Journal, 31(14): 3130. [55] Rothbauer U, Zolghadr K, Muyldermans S, et al.2008. A versatile nanotrap for biochemical and functional studies with fluorescent fusion proteins[J]. Molecular & Cellular Proteomics, 7(2): 282-289. [56] Saerens D, Conrath K, Govaert J, et al.2008. Disulfide bond introduction for general stabilization of immunoglobulin heavy-chain variable domains[J]. Journal of Molecular Biology, 377(2): 478-488. [57] Saerens D, Kinne J, Bosmans E, et al.2004. Single domain antibodies derived from dromedary lymph node and peripheral blood lymphocytes sensing conformational variants of prostate-specific antigen[J]. The Journal of biological chemistry, 279(50): 51965-51972. [58] Schumacher, Dominik, Helma, et al.2018. Nanobodies: Chemical functionalization strategies and intracellular applications[J]. Angewandte Chemie, 57(9): 2314-2333. [59] Serge M.2020. Applications of nanobodies[J]. Annual Review of Animal Biosciences, 9: 401-421. [60] Smith G.1985. Filamentous fusion phage: Novel expression vectors that display cloned antigens on the virion surface[J]. Science, 228(4705): 1315-1317. [61] Stijlemans B, Caljon G, Natesan S, et al.2011. High affinity nanobodies against the trypanosome brucei VSG are potent trypanolytic agents that block endocytosis[J]. PLOS Pathogens, 7(6): e1002072. [62] Swindells M B, Porter C T, Couch M, et al.2017. abYsis: Integrated antibody sequence and structure-management, analysis, and prediction[J]. Journal of Molecular Biology, 429(3): 356-364. [63] Vincke C, Loris R, Saerens D, et al.2009. General strategy to humanize a camelid single-domain antibody and identification of a universal humanized nanobody scaffold[J]. Journal of Biological Chemistry, 284(5): 3273. [64] Virdi V, Palaci J, Laukens B, et al.2019. Yeast-secreted, dried and food-admixed monomeric IgA prevents gastrointestinal infection in a piglet model[J]. Nature Biotechnology, 37(5): 527-530. [65] Virna CR, Natalija B, Ullrich W, et al.2004. Efficient cancer therapy with a nanobody-based conjugate[J]. Cancer Research, 64(8): 2853-2857. [66] Wang P H, Hsu C I, Tang S C, et al.2004. Fungal immunomodulatory protein from Flammulina velutipes induces interferon-gamma production through p38 mitogen-activated protein kinase signaling pathway[J]. Journal of Agricultural & Food Chemistry, 52(9): 2721. [67] Xu Y, Xiong L, Li Y, et al.2015. Anti-idiotypic nanobody as citrinin mimotope from a naive alpaca heavy chain single domain antibody library[J]. Analytical & Bioanalytical Chemistry, 407(18): 5333-5341. [68] Yang Z, Diane S, Liu W, et al.2014. A novel multivalent, single-domain antibody targeting TcdA and TcdB prevents fulminant clostridium difficile infection in mice[J]. Journal of Infectious Diseases, 210(6): 964-972. [69] Zarschler K, Witecy S, Kapplusch F, et al.2013. High-yield production of functional soluble single-domain antibodies in the cytoplasm of Escherichia coli[J]. Microbial Cell Factories, 12(1): 97. |
|
|
|