|
|
|
| Construction of Recombinant Lactococcus lactis Expressing IFN-γ and Evaluation of Its Clinical Efficacy |
| WANG Yu-Qi1, SUN Pei-Wen1, WANG Wei1, PANG Kun1, WANG Yu-Yu1, LYU Chang-Rong1, SUN Wen-Yang2, LIANG Xiao-Jun3, LIN Yong-Kang4, HUA Jin-Lian1, MU Hai-Long5,*, LI Na1,* |
1 College of Animal Medicine/Shaanxi Stem Cell Engineering & Technology Center, Northwest A&F University, Yangling 721000, China; 2 Ningxia Vocational College, Yinchuan 750021, China; 3 Animal Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750021, China; 4 Qingdao Runqian Bioengineering Co., Ltd., Qingdao 266000, China; 5 Medical Research and Experiment Center, Shaanxi University of Chinese Medicine, Xianyang 712000, China |
|
|
|
|
Abstract Interferon-γ (IFN-γ) exhibits broad-spectrum antiviral activity and plays an important role in animal husbandry. This study aimed to construct a recombinant lactic acid bacterium expressing IFN-γ and evaluate its safety and therapeutic effect in clinical diarrheal diseases. Through molecular cloning technology, the goat IFN-γ gene was successfully inserted into the target plasmid pNZ8149, and the recombinant plasmid pNZ8149-IFN-γ was constructed. Furthermore, the recombinant Lactococcus lactis pNZ8149-IFN-γ/NZ3900 (rL. lactis-IFN-γ) was successfully constructed. Methods such as restriction enzyme digestion identification, bacterial liquid PCR, and DNA sequencing were used to verify the correctness of the recombinant plasmid, and it was identified by Western blot that the recombinant strain could successfully express IFN-γ. The recombinant probiotic was evaluated for safety in animals such as cat (Felis silvestris catus) and goat (Capra hircus), and the results showed that the recombinant strain had no obvious toxicity to the experimental animals. The effect of the recombinant probiotic preparation was evaluated through naturally diseased animals (calves (Bos taurus) with persistent diarrhea, forest musk deer (Moschus berezovskii) with diarrhea, and dogs (Canis lupus familiaris) with gastroenteritis). The results showed that the recombinant probiotic preparation had a significant effect on the treatment of diarrhea in different species. The results of this study indicated that the recombinant lactic acid bacterium expressing IFN-γ could not only be safely applied in clinical practice, but also had a good effect in the treatment of animal diarrheal diseases. This study provides a new treatment strategy for animal diarrheal diseases and other related diseases caused by viral infections.
|
|
Received: 19 May 2025
|
|
|
|
Corresponding Authors:
* 2041021@sntcm.edu.cn; lina2017@nwafu.edu.cn
|
|
|
|
[1] 曹瑞兵, 蔡梅红, 陈德胜等. 2004. 猪γ-干扰素双顺反子表达载体的构建及在大肠杆菌中的表达[J].中国兽医学报, (01): 52-55. (Cao R B, Cai M H, Chen D S et al.2004. Construction of porcine interferon-gamma bicistron expression vector and its expression in E.coli[J]. Chinese Journal of Veterinary Science, (01): 52-55.) [2] 高莹, 李淼, 孙元, 等. 2022.乳酸乳球菌表达系统的发展现状与前景展望[J].微生物学报, 62(3): 895-905. (Gao Y, Li M, Sun Yet al.2022. Development status and prospect of Lactococcus lactis expression system[J]. Acta Microbiologica Sinica, 62(3): 895-905.) [3] 姜红菊, 李步社, 孙嘉瑛, 等. 2024.猪流行性腹泻的综合防控方案[J].国外畜牧学(猪与禽), 44(5): 45-55. (Jiang H J, Li B S, Sun J Y, et al.2024. Comprehensive prevention and control plan for porcine epidemic diarrhea[J]. Foreign Animal Husbandry (Pigs and Poultry), 44(5): 45-55.) [4] 雷娜, 陈书明. 2009. 鸡IFN-γ基因克隆表达及其抗球虫研究进展[J].中国畜牧兽医, 36(7): 178-181. (Lei N, Chen S M, 2009. Cloning and expression of chicken IFN-γ gene and research progress on its resistance to coccidiosis[J]. China Animal Science and Veterinary Medicine, 36(7): 178-181.) [5] 黎波宏, 黄馨, 何庆元, 等. 2024.广西地区犬和猫肠道病毒的病原学调查研究[J].中国兽医杂志, 60(8): 24-31. (Li B H, Huang X, He Q Y, et al.2024. Etiology investigation on enteroviruses from dogs and cats in Guangxi[J]. Chinese Journal of Veterinary Medicine, 60(8): 24-31.) [6] 牟思洋, 李焱, 何小强, 等. 2024.牛病毒性腹泻病毒流行和防控研究进展[J].养殖与饲料, 23(10): 90-94. (Mou S Y, Li Y, He X Q, et al.2024. Research progress on the prevalence and prevention and control of Bovine viral diarrhea virus[J]. Breeding and Feed, 23(10): 90-94.) [7] 王景隆, 杜海利, 蔡海锋. 2024. 2023年河南部分地区6种猪腹泻病流行病学调查[J].现代畜牧兽医, (10): 59-62. (Wang J L, Du H L, Cai H F. 2024. Epidemiological survey of six kinds of porcine diarrheal diseases in some areas of Henan province in 2023[J]. Modern Journal of Animal Husbandry and Veterinary Medicine, (10): 59-62.) [8] 王睿男, 蒋菲, 刘亚涛, 等. 2021. 重组牛IFN-γ蛋白在昆虫杆状病毒表达系统中的表达、纯化和鉴定[J].中国草食动物科学, 41(02): 39-43. ( Wang R N, Jiang F, Liu Y T, et al.2021. Expression purification and identification of recombinant brovine IFN-γ protein in Baculovirus expression vector system[J]. Chinese Herbivore Science, 41(02): 39-43.) [9] 王诗研, 印春生, 曹众达, 等. 2024.犬细小病毒病防控技术研究进展[J].中国兽药杂志, 58(6): 86-94. (Wang S Y, Yin C S, Cao Z D, et al.2024. Advances in prevention and control techniques for Canine parvovirus disease[J]. Chinese Journal of Veterinary Drug, 58(6): 86-94.) [10] 王梓, 吴佳琦, 高丽娟, 等. 2024.牛病毒性腹泻的危害及防控措施[J].中国动物保健, 26(11): 52-54. (Wang Z, Wu J Q, Gao L J, et al.2024. The hazards and prevention and control measures of viral diarrhea in cattle[J]. Animal Health Care in China, 26(11): 52-54.) [11] 尹召华, 张宜辉, 张钰, 等. 2018.联合注射牛γ干扰素和人溶菌酶表达质粒对奶牛乳房炎的治疗效果[J].畜牧与兽医, 50(8): 95-98. (Yin Z H, Zhang Y H, Zhang Y, et al.Therapeutic effect of human lysozyme and bovine interferon-γ expression vectors on diary cow mastitis[J]. Animal Hus-bandry & Veterinary Medicine, 50(8): 95-98.) [12] 禹航, 李晓婷, 刘知伟, 等. 2018.鸡干扰素γ的原核表达及其抗传染性法氏囊病毒的活性分析[J].中国生物制品学杂志, 31(12): 1340-1343, 1351. (Yu H, Li X T, Liu Z W, et al.2018. Prokaryotic expression and anti Infectious bursal disease virus activity of chicken interferon γ[J]. Chinese Journal of Biologicals, 31(12): 1340-1343, 1351.) [13] 张玉杨. 2024.猪流行性腹泻病毒基因组和诊断方法研究进展[J].河南农业科学, 53(10): 12-20. (Zhang Y Y.2024. Research progress in genome and diagnostic methods of Porcine epidemic diarrhea virus[J]. Journal of Henan Agricultural Sciences, 53(10): 12-20.) [14] 赵伟鸽, 单同领, 朱建国, 等. 2010.猪α、γ干扰素的原核表达、纯化及抗病毒活性初步研究[J].上海交通大学学报(农业科学版), 28(01): 64-69. (Zhao W G, Shan T L, Zhu J G, et al.2010. Prokarotic expression, purification and antiviral activity detection of porcine interferon-α and interferon-γ[J]. Journal of Shanghai Jiao Tong University (Agricultural Science), 28(01): 64-69.) [15] 周世水, 王小宁. 2008. HBscFv-IFNγ在毕赤酵母X33中的表达、纯化及鉴定[J].生物工程学报, (03): 423-429. (Zhou S S, Wang X N. 2008. Expression purification and verification of HBscFv-IFNγ in Pichia pastoris x33[J]. Chinese Journal of Biotechnology, (03): 423-429.) [16] Anderson R C, Cookson A L, Mcnabb W C, et al.2010. Lactobacillus plantarum MB452 enhances the function of the intestinal barrier by increasing the expression levels of genes involved in tight junction formation[J]. BMC Microbiology, 10(1): 316. [17] Chen Y, Zhang Y, Wang X, et al.2023. Transmissible gastroenteritis virus: An update review and perspective[J]. Viruses, 15(2): 359. [18] Frelet-barrand A.2022. Lactococcus lactis, an attractive cell factory for the expression of functional membrane proteins[J]. Biomolecules, 12(2): 180. [19] Graham S P, Jones G E, Maclean M, et al.1995. Recombinant ovine interferon gamma inhibits the multiplication of Chlamydia psittaci in ovine cells[J]. Journal of Comparative Pathology, 112(2): 185-195. [20] Hao X, Li Y, Xiao X, et al.2022. The changes in Canine parvovirus variants over the years[J]. International Journal of Molecular Sciences, 23(19): 11540. [21] Ho P S, Kwang J, Lee Y K.2005. Intragastric administration of Lactobacillus casei expressing transmissible gastroentritis coronavirus spike glycoprotein induced specific antibody production[J]. Vaccine, 23(11): 1335-1342. [22] Huot N, Planchais C, Rosenbaum P, et al.2023. SARS-CoV-2 viral persistence in lung alveolar macrophages is controlled by IFN-γ and NK cells[J]. Nature Immunology, 24(12): 2068-2079. [23] Jung K, Saif L J, Wang Q.2020. Porcine epidemic diarrhea virus (PEDV): An update on etiology, transmission, pathogenesis, and prevention and control[J]. Virus Research, 286: 198045. [24] Kaushik J K, Kumar A, Duary R K, et al.2009. Functional and probiotic attributes of an indigenous isolate of Lactobacillus plantarum[J]. PLOS ONE, 4(12): e8099. [25] Lin F, Zhang H, Li L, et al.2022. PEDV: Insights and advances into types, function, structure, and receptor recognition[J]. Viruses, 14(8): 1744. [26] Liu C, Liu Y, Liang L, et al.2019. RNA-seq based transcriptome analysis during Bovine viral diarrhoea virus (BVDV) infection[J]. BMC Genomics, 20(1): 774. [27] Liu Y, Zhang H, Dong S, et al.2022. Secretion of IFN-γ by Transgenic mammary epithelial cells in vitro reduced mastitis infection risk in goats[J]. Frontiers in Veterinary Science, 9: 898635. [28] Lyu C, Yao L, Zhu Q, et al.2021. Reconstruction of the glutamate decarboxylase system in Lactococcus lactis for biosynthesis of food-grade γ-aminobutyric acid[J]. Applied Microbiology and Biotechnology, 105(10): 4127-4140. [29] Maischberger T, Mierau I, Peterbauer C K, et al.2010. High-level expression of Lactobacillus β-Galactosidases in Lactococcus lactis using the food-grade, nisin-controlled expression system NICE[J]. Journal of Agricultural and Food Chemistry, 58(4): 2279-2287. [30] Malyshkina A, Bruggemann A, Paschen A, et al.2023. Cytotoxic CD4+ T cells in chronic viral infections and cancer[J]. Frontiers in Immunology, 14: 1271236. [31] Mierau I, Kleerebezem M.2005. 10 years of the nisin-controlled gene expression system (NICE) in Lactococcus lactis[J]. Applied Microbiology and Biotechnology, 68(6): 705-717. [32] Qi S, Zhao J, Guo D, et al.2020. A mini-review on the epidemiology of Canine parvovirus in China[J]. Frontiers in Veterinary Science, 7: 5. [33] Ren C, Zhang Q, de Haan B J, et al.2020. Protective effects of lactic acid bacteria on gut epithelial barrier dysfunction are Toll like receptor 2 and protein kinase C dependent[J]. Food & Function, 11(2): 1230-1234. [34] Rhee S, Lee J, Lee C.2011. Importance of lactic acid bacteria in Asian fermented foods[J]. Microbial Cell Factories, 10(Suppl 1): S5. [35] Saha U B, Saroj S D.2022. Lactic acid bacteria: Prominent player in the fight against human pathogens[J]. Expert Review of Anti-infective Therapy, 20(11): 1435-1453. [36] Samuel C E.2001. Antiviral actions of interferons[J]. Clinical Microbiology Reviews, 14(4): 778-809. [37] Schijns V E J C, Scholtes N C, Zuilekom H I V, et al.2002. Facilitation of antibody forming responses to viral vaccine antigens in young cats by recombinant Baculovirus-expressed feline IFN-γ[J]. Vaccine, 20(13): 1718-1724. [38] Schoenborn J R, Wilson C B.2007. Regulation of interferon-gamma during innate and adaptive immune responses.[J]. Advances in Immunology, 96: 41-101. [39] Shapouri M A, Mohammadian S, Vazini H, et al.2018. Macrophage plasticity, polarization, and function in health and disease[J]. Journal of Cellular Physiology, 233(9): 6425-6440. [40] Shi J, Xie Q, Yue Y, et al.2021. Gut microbiota modulation and anti-inflammatory properties of mixed lactobacilli in dextran sodium sulfate-induced colitis in mice[J]. Food & Function, 12(11): 5130-5143. [41] Sivan A, Corrales L, Hubert N, et al.2015. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy[J]. Science, 350(6264): 1084-1089. [42] Souza-Fonseca-Guimaraes F, Adib-Conquy M, Cavaillon J.2012. Natural killer (NK) cells in antibacterial innate immunity: Angels or devils?[J]. Molecular Medicine, 18(2): 270-285. [43] Stuetzer B, Hartmann K.2014. Feline parvovirus infection and associated diseases[J]. The Veterinary Journal, 201(2): 150-155. [44] Szatraj K, Szczepankowska A K, Chmielewska-Jeznach M.2017. Lactic acid bacteria - promising vaccine vectors: Possibilities, limitations, doubts[J]. Journal of Applied Microbiology, 123(2): 325-339. [45] Wang M, Gao Z, Zhang Y, et al.2016. Lactic acid bacteria as mucosal delivery vehicles: A realistic therapeutic option[J]. Applied Microbiology and Biotechnology, 100(13): 5691-5701. [46] Zhang H, Zou C, Peng O, et al.2023. Global dynamics of Porcine enteric coronavirus PEDV Epidemiology, Evolution, and Transmission[J]. Molecular Biology and Evolution, 40(3): msad052. [47] Zhao L, Zhao Y, Liu R, et al.2017. The transcription factor DAF-16 is essential for increased longevity in C. elegans exposed to Bifidobacterium longum BB68[J]. Scientific Reports, 7(1): 7408. [48] Zhou X X, Li W F, Ma G X, et al.2006. The nisin-controlled gene expression system: Construction, application and improvements[J]. Biotechnology Advances, 24(3): 285-295. |
|
|
|