|
|
|
| Effects of Straw Return on Soil Bacterial Community Structure and Diversity in Rice-crayfish Co-culture System |
| JIANG Huan-Qi1,2, SI Guo-Han1,*, ZHU Xiu-Xiu1, PENG Cheng-Lin1, ZHAO Shu-Jun1, LIU Wei1, YU Yong3, REN Wen-Hai3, KE Mei-Zhi4 |
1 Plant Protection and Soil Fertilizer Institute, Hubei Academy of Agricultural Sciences/National Soil Quality Hongshan Observation and Experimental Station, Wuhan 430064, China; 2 College of Life Sciences, Yangtze University, Jingzhou 434025, China; 3 Hubei Provincial General Station of Cultivated Land Quality and Fertilizer, Wuhan 430070, China; 4 Yangxin County Agricultural Technology Extension Service Center, Yangxin 435200, China |
|
|
|
|
Abstract The rice-crayfish integrated farming system is an ecological agricultural model characterized by resource recycling and mutualistic symbiosis between crop cultivation and aquaculture. This study investigated the effects of straw return on soil bacterial community composition and diversity in a rice-crayfish integrated farming system. Three experimental treatments were implemented: winter flooding alone, winter flooding with straw return, and winter flooding combined with crayfish (Procambarus clarkii) culture and straw return. Bacterial community structure was analyzed using Illumina MiSeq high-throughput sequencing. The results demonstrated that: (1) Winter flooding combined with crayfish culture and straw return significantly increased soil total organic carbon and alkali-hydrolyzable nitrogen content but reduced soil pH; (2) Compared to winter flooding with straw return, winter flooding combined with crayfish culture and straw return decreased microbial species richness, elevated the relative abundances of phylum Myxococcota and candidate phylum MBNT15 as well as genus unclassified_MBNT15, but suppressed genera Intrasporangium and MND1; (3) Alpha and beta-diversity analyses revealed that integrating crayfish culture with straw return under winter flooding significantly reduced bacterial richness and diversity, while altering community structure; (4) Redundancy analysis identified soil pH and available phosphorus as the dominant drivers of bacterial community variation. This study demonstrates that straw return under the rice-crayfish integrated farming system alters soil physicochemical properties, reduces bacterial community richness and diversity, and modifies microbial community structure, thus providing a theoretical basis for nutrient cycling mechanisms in paddy soils of the rice-crayfish integrated farming system.
|
|
Received: 26 February 2025
|
|
|
|
Corresponding Authors:
*siguoh@qq.com
|
|
|
|
[1] 包明, 何红霞, 马小龙, 等. 2018. 化学氮肥与绿肥对麦田土壤细菌多样性和功能的影响[J]. 土壤学报, 55(3): 734-743. (Bao M, He H X, Ma X L, et al.2018. Effects of chemical nitrogen fertilizer and green manure on bacterial diversity and function in wheat field soil[J]. Acta Pedologica Sinica, 55(3): 734-743.) [2] 鲍士旦. 2005. 土壤农化分析[M]. 中国农业出版社, 北京. pp. 25-114. (Bao S D.2005. Soil Agricultural Chemistry Analysis[M]. China Agriculture Press, Beijing, China, pp. 25-114.) [3] 陈秀波. 2020. 不同林型红松林土壤微生物群落组成和多样性及与理化性质关系[D]. 博士毕业论文, 东北林业大学, 导师: 段文标, pp. 2-7. (Chen X B.2020. Diversity of soil microbial communities and their relationship with physical and chemical properties in different forest types of Korean pine[D]. Thesis for Ph.D., Northeast Forestry University, Supervisor: Duan W B, pp. 2-7.) [4] 代红翠, 张慧, 薛艳芳, 等. 2019. 不同耕作和秸秆还田下褐土真菌群落变化特征[J]. 中国农业科学, 52(13): 2280-2294. (Dai H C, Zhang H, Xue Y F, et al.2019. Characteristics of fungal community changes under different tillage and straw return practices in the brown soil[J]. Scientia Agricultura Sinica, 52(13): 2280-2294.) [5] 方宇, 王飞, 李清华, 等. 2018. 连续水旱轮作对水稻冷浸田土壤细菌群落结构的影响[J]. 土壤学报, 55(2): 515-525. (Fang Y, Wang F, Li Q H, et al.2018. Effects of continuous water and dry farming rotation on soil bacterial community structure of paddy fields with cold water soaking[J]. Acta Pedologica Sinica, 55(2): 515-525.) [6] 郭梨锦. 2018. 免耕与秸秆还田对稻麦种植系统土壤有机碳库与微生物多样性的影响[D]. 博士毕业论文, 华中农业大学, 导师: 曹凑贵, pp. 5-15. (Guo L J.2018. Effects of no-tillage and straw return on soil organic carbon pool and microbial diversity in rice-wheat cropping systems[D]. Doctoral dissertation, Huazhong Agricultural University, Supervisor: Cao C G, pp. 5-15.) [7] 黄昌勇. 2000. 土壤学[M]. 中国农业出版社, 北京. pp. 54-58. (Huang C Y.2000. Pedology[M]. China Agriculture Press, Beijing. pp. 54-58.) [8] 孔德杰. 2020. 秸秆还田和施肥对麦豆轮作土壤碳氮及微生物群落的影响[D]. 博士毕业论文, 西北农林科技大学, 导师: 杨改河, pp. 7-15. (Kong D J.2020. Effects of straw incorporation and fertilization on soil carbon, nitrogen and microbial communities in wheat-soybean rotation[D]. Thesis for Ph.D., Northwest A&F University, Supervisor: Yang G H, pp. 7-15.) [9] 赖政, 肖力婷, 赖胜, 等. 2023. 稻虾种养新模式对稻田土壤肥力和微生物群落结构的影响[J]. 土壤学报, 60(6): 1788-1798. (Lai Z, Xiao L T, Lai S, et al.2023. Effects of a new rice-shrimp co-culture model on paddy soil fertility and microbial community structure[J]. Acta Pedologica Sinica, 60(6): 1788-1798.) [10] 李嘉琦. 2022. 秸秆深还田对土壤氮素利用的影响及其微生物学机制[D]. 博士毕业论文, 沈阳农业大学, 导师: 邹洪涛, pp. 2-15. (Li J Q.2022. Effects of deep straw incorporation on soil nitrogen utilization and its microbial mechanisms[D]. Thesis for Ph.D., Shenyang Agricultural University, Supervisor: Zou H T, pp. 2-15.) [11] 李彦林, 曾春梅, 龙美君. 2020. 不同土地利用方式下细菌群落对土壤碳矿化速率的影响[J]. 安全与环境学报, 20(5): 1967-1974. (Li Y L, Zeng C M, Long M J.2020. Effects of different land use types on bacterial community and soil carbon mineralization rate[J]. Journal of Safety and Environment, 20(5): 1967-1974.) [12] 刘慧, 焦岩, 李禹韬, 等. 2024. 生物炭和氮肥联合施用对水稻生产中土壤细菌群落的影响[J]. 中国土壤与肥料, (07): 88-100. (Liu H, Jiao Y, Li Y T, et al. 2024. Impact of combined application of biochar and nitrogen fertilizer on soil bacterial communities in rice production[J]. Chinese Journal of Soil and Fertilizer, (07): 88-100.) [13] 刘蕾, 徐梦, 王凌, 等. 2021. 引入豆科作物的轮作模式对设施蔬菜土壤微生物群落组成的影响[J]. 华北农学报, 36(3): 203-215. (Liu L, Xu M, Wang L, et al.2021. Impact of crop rotation with legumes on soil microbial community composition of protected vegetables[J]. Acta Agriculturae Boreali-Sinica, 36(3): 203-215.) [14] 倪惠菁, 赵建诚, 杨振亚, 等. 2024. 蚕沙有机肥对雷竹林土壤理化性质和酶活性的影响[J]. 东北林业大学学报, (09): 109-114. (Ni H J, Zhao J C, Yang Z Y, et al.2024. Effects of silkworm sand organic fertilizer on soil physico-chemical properties and enzyme activity in bamboo forests[J]. Journal of Northeast Forestry University, 52(09): 109-114.) [15] 佀国涵, 袁家富, 彭成林, 等. 2020. 长期稻虾共作模式提高稻田土壤生物肥力的机理[J]. 植物营养与肥料学报, 26(12): 2168-2176. (Si G H, Yuan J F, Peng C L, et al.2020. Mechanism of long-term integrated rice-crayfish farming increasing soil biological fertility of paddy fields[J]. Journal of Plant Nutrition and Fertilizers, 26(12): 2168-2176.) [16] 宋宇, 王鹏, 韦月平, 等. 2020. 不同稻田共作模式对土壤细菌群落结构的影响[J]. 西北农业学报, 29(2): 216-223. (Song Y, Wang P, Wei Y P, et al.2020. Impact of different rice-cultivation patterns on soil bacterial community structure[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 29(2): 216-223.) [17] 陶先法, 李冰, 喻召雄, 等. 2022. 稻虾共生模式对水稻结实期根系分泌物及微生物的影响[J]. 水产学报, 46(11): 2122-2133. (Tao X F, Li B, Yu Z X, et al.2022. Impact of rice-crayfish co-culture system on root exudates and microorganisms during the grain-filling stage of rice[J]. Journal of Fisheries of China, 46(11): 2122-2133.) [18] 王光华, 刘俊杰, 于镇华, 等. 土壤酸杆菌门细菌生态学研究进展[J]. 生物技术通报, 2016(2): 14-20. (Wang G H, Liu J J, Yu Z H, et al.Advances in the ecology of Acidobacteria in soil[J]. Biotechnology Bulletin, 2016(2): 14-20.) [19] 王蓉, 朱杰, 金涛, 等. 2019. 稻虾共作模式下稻田土壤氨氧化微生物丰度和群落结构的特征[J]. 植物营养与肥料学报, 25(11): 1887-1899. (Wang R, Zhu J, Jin T, et al.2019. Characteristics of ammonia-oxidizing microorganisms' abundance and community structure in paddy soil under rice-crayfish co-culture system[J]. Journal of Plant Nutrition and Fertilizers, 25(11): 1887-1899.) [20] 王占军, 马琨, 崔慧珍, 等. 2020. 土壤丛枝菌根真菌与宁夏主要草原类型植被群落分布间的相互关系研究[J]. 草业学报, 29(12): 150-160. (Wang Z J, Ma K, Cui H Z, et al.2020. Study on the relationship between arbuscular mycorrhizal fungi in soil and vegetation community distribution of main grassland types in Ningxia[J]. Acta Prataculturae Sinica, 29(12): 150-160.) [21] 肖求清. 2017. 稻虾共作对稻田生物多样性的影响[D]. 硕士毕业论文, 华中农业大学, 导师: 曹凑贵, pp. 4-10. (Xiao Q Q.2017. Effects of integrated rice-crayfish farming on paddy biodiversity[D]. Thesis for M.S., Huazhong Agricultural University, Supervisor: Cao C G, pp. 4-10.) [22] 徐忠山, 刘景辉, 逯晓萍, 等. 2020. 施用有机肥提高黑土土壤酶活性、增加细菌数量及种类多样性[J]. 中国土壤与肥料, (4): 50-55. (Xu Z S, Liu J H, Lu X P, et al. 2020. Application of organic fertilizer to improve soil enzyme activity, increase bacterial quantity and species diversity in black soil[J]. Chinese Journal of Soil and Fertilizer, (4): 50-55.) [23] 张俊莹. 2020. 连续水稻秸秆还田下氮肥减施对土壤肥力及微生物多样性的影响[D]. 硕士毕业论文, 黑龙江八一农垦大学, 导师: 焦峰, pp. 1-6. (Zhang J Y.2020. Effects of reduced nitrogen fertilization under continuous straw return on soil fertility and microbial diversity[D]. Thesis for M.S., Heilongjiang Bayi Agricultural University, Supervisor: Jiao F, pp. 1-6.) [24] 周阳, 黄旭, 赵海燕, 等. 2020. 麦秸秆和沼液配施对水稻苗期生长和土壤微生物的调控[J]. 土壤学报, 57(2): 479-489. (Zhou Y, Huang X, Zhao H Y, et al.2020. Regulation of rice seedling growth and soil microorganisms by combined application of wheat straw and biogas slurry[J]. Acta Pedologica Sinica, 57(2): 479-489.) [25] 朱秀秀, 彭成林, 佀国涵, 等. 2021. 稻虾共作模式对稻田土壤细菌群落结构与多样性的影响[J]. 土壤通报, 52(5): 1121-1128. (Zhu X X, Peng C L, Si G H, et al.2021. Effects of rice-crayfish co-culture on soil bacterial community structure and diversity in paddy fields[J]. Chinese Journal of Soil Science, 52(5): 1121-1128.) [26] Chanda T, Manuel D, Kelly H, et al.2019. Losses in microbial functional diversity reduce the rate of key soil processes[J]. Soil Biology and Biochemistry, 135: 267-274. [27] Chen Y J, Pok M L, Jennifer L W, et al.2021. Metabolic flexibility allows bacterial habitat generalists to become dominant in a frequently disturbed ecosystem[J]. The ISME Journal, 15(10): 2986-3004. [28] Fierer N, Bradford M A, Jackson R B.2007. Toward an ecological classification of soil bacteria[J]. Ecology, 88(6): 1354-1364. [29] Guo L, Wang C, Feng T Y, et al.2022. Short-term application of organic fertilization impacts phosphatase activity and phosphorus-mineralizing bacterial communities of bulk and rhizosphere soils of maize in acidic soil[J]. Plant and Soil, 484(1-2): 95-113. [30] He J Z, Shen J P, Zhang L M, et al.2007. Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices[J]. Environmental Microbiology, 9(9): 2364-2374. [31] Hermans S M, Buckley H L, Case B S, et al.2020. Using soil bacterial communities to predict physico-chemical variables and soil quality[J]. Microbiome, 8(1): 1-15. [32] Lauber C L, Strickland M S, Bradford M A.2008. The influence of soil properties on the structure of bacterial and fungal communities across land-use types[J]. Soil Biology and Biochemistry, 40(9): 2407-2415. [33] Li H, Zhang Y Y, Yang S, et al.2019. Variations in soil bacterial taxonomic profiles and putative functions in response to straw incorporation combined with N fertilization during the maize growing season[J]. Agriculture, Ecosystems & Environment, 283: 1-12. [34] Li W G, Shi F, Yi S S, et al.2024. Soil multifunctionality predicted by bacterial network complexity explains differences in wheat productivity induced by fertilization management[J]. European Journal of Agronomy, 153: 127051. [35] Li Z L, Qiu L X, Zhang T J, et al.2023. Long-term application of controlled-release potassium chloride increases maize yield by affecting soil bacterial ecology, enzymatic activity and nutrient supply[J]. Field Crops Research, 297: 108949. [36] Lin B J, Li R C, Liu K C, et al.2023. Management-induced changes in soil organic carbon and related crop yield dynamics in China's cropland[J]. Global Change Biology, 29(13): 3575-3590. [37] Ma L, Zhou G X, Zhang J B, et al.2024. Long-term conservation tillage enhances microbial carbon use efficiency by altering multitrophic interactions in soil[J]. Science of the Total Environment, 915: 170006. [38] Shen C C, Xiong J B, Zhang H Y, et al.2013. Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain[J]. Soil Biology and Biochemistry, 57(1): 204-211. [39] Si G H, Peng C L, Yuan J F, et al.2017. Changes in soil microbial community composition and organic carbon fractions in an integrated rice-crayfish farming system in subtropical China[J]. Scientific Reports, 7(1): 2856. [40] Suolang Y Z, Luo W X, Ma J W, et al.2024. Extreme precipitation alters soil nitrogen cycling related microbial community in karst abandoned farmland[J]. Applied Soil Ecology, 197: 105328. [41] Wang Z T, Liu L, Chen Q, et al.2016. Conservation tillage increases soil bacterial diversity in the dryland of northern China[J]. Agronomy for Sustainable Development, 36(2): 1-9. [42] Xia X Y, Zhang P P, He L L, et al.2019. Effects of tillage managements and maize straw returning on soil microbiome using 16S rDNA sequencing[J]. Journal of Integrative Plant Biology, 61(6): 765-777. [43] Yan S, Song J, Fan J, et al.2020. Changes in soil organic carbon fractions and microbial community under rice straw return in Northeast China[J]. Global Ecology and Conservation, 22: e00962. [44] Yang S S, Sun J Y, Wang C, et al.2024. Residue quality drives SOC sequestration by altering microbial taxonomic composition and ecophysiological function in desert ecosystem[J]. Environmental Research, 250: 118475. [45] Zhao L L, Zhao Q Z, Zhao P S, et al.2021. Vital roles of soil microbes in driving terrestrial nitrogen immobilization[J]. Global Change Biology, 27(9): 1848-1858. [46] Zhao S, Qiu S, Xu X.2019. Change in straw decomposition rate and soil microbial community composition after straw addition in different long-term fertilization soils[J]. Applied Soil Ecology, 138: 123-133. |
|
|
|