|
|
|
| Advances in the Study of Interspecies Chimerism in Mammals |
| ZHANG Yan-Yan1, DU Juan2, LIN Jiang-Wei3,4,*, GONG Dao-Qing1,* |
1 College of Animal Science and Technology,Yangzhou University,Yangzhou 225009, China; 2 College of Bioscience and Biotechnology, Yangzhou University,Yangzhou 225009, China; 3 Kunmin Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China; 4 Faculty of Laboratory Animals, Kunming Medical University, Kunming 650504, China |
|
|
|
|
Abstract For patients with end-stage organ failure, organ transplantation is often the only viable treatment. However, there is an extreme shortage of organs available for transplantation globally. Regenerative medicine offers alternative ways to generate donor organs, with major strategies including xenotransplantation, tissue engineering, bioprinting, and organoid technology. However, these methods have their own limitations and drawbacks, restricting their clinical applications. In recent years, several clinical trials of xenotransplantation have been conducted, involving the transplantation of gene-edited pig organs into live human patients, but current reports indicate that these patients did not survive for long periods. Blastocyst complementation to create human-animal chimeras represents another potential pathway to obtain organs for human transplantation. This involves generating animal embryos with cell-lineage or organ deficiencies through gene editing to create a "vacant" microenvironment, which is then populated with human pluripotent stem cells (hPSC). Despite many obstacles and challenges, scientists are continuously refining and attempting this approach in hopes of clinical application. This review summarized the current research on interspecies chimeras and examined the existing challenges and potential strategies in this field, thereby providing a theoretical reference for future studies.
|
|
Received: 03 January 2025
|
|
|
|
Corresponding Authors:
* Corresponding authors, yzgong@163.com; jwlin730@hotmail.com
|
|
|
|
[1] Anand R P, Layer J V, Heja D, et al.2023. Design and testing of a humanized porcine donor for xenotransplantation[J]. Nature, 622(7982): 393-401. [2] Ballard E, Sakurai M, Yu L, et al.2024. Incompatibility in cell adhesion constitutes a barrier to interspecies chimerism[J]. Cell Stem Cell, 31(10): 1419-1426.e7. [3] Ballard E B, Wu J.2021. Growth competition in interspecies chimeras: A new paradigm for blastocyst complementation[J]. Cell Stem Cell, 28(1): 3-5. [4] Boroviak T, Loos R, Bertone P, et al.2014. The ability of inner-cell-mass cells to self-renew as embryonic stem cells is acquired following epiblast specification[J]. Nature Cell Biology, 16(6): 516-528. [5] Chang A N, Liang Z, Dai H Q, et al.2018. Neural blastocyst complementation enables mouse forebrain organogenesis[J]. Nature, 563(7729): 126-130. [6] Chen J, Lansford R, Stewart V, et al.1993. RAG-2-deficient blastocyst complementation: an assay of gene function in lymphocyte development[J]. Proceedings of the National Academy of Sciences of the USA, 90(10): 4528-32. [7] Coppiello G, Barlabe P, Moya-Jodar M, et al.2023. Generation of heart and vascular system in rodents by blastocyst complementation[J]. Developmental Cell, 58(24): 2881-2895.e2887. [8] Das S, Koyano-Nakagawa N, Gafni O, et al.2020. Generation of human endothelium in pig embryos deficient in ETV2[J]. Nature Biotechnology, 38(3): 297-302. [9] De Los Angeles A, Wu J.2022. New concepts for generating interspecies chimeras using human pluripotent stem cells[J]. Protein Cell, 13(4): 234-238. [10] Evans M J, Kaufman M H.1981. Establishment in culture of pluripotential cells from mouse embryos[J]. Nature, 292(5819): 154-156. [11] Fu R, Yu D, Ren J, et al.2020. Domesticated cynomolgus monkey embryonic stem cells allow the generation of neonatal interspecies chimeric pigs[J]. Protein Cell, 11(2): 97-107. [12] Gafni O, Weinberger L, Mansour A A, et al.2013. Derivation of novel human ground state naive pluripotent stem cells[J]. Nature, 504(7479): 282-286. [13] Gao X, Nowak-Imialek M, Chen X, et al.2019. Establishment of porcine and human expanded potential stem cells[J]. Nature Cell Biology, 21(6): 687-699. [14] Garry D J, Garry M G.2019. Interspecies chimeras and the generation of humanized organs[J]. Circulation Research, 124(1): 23-25. [15] Goto T, Hara H, Sanbo M, et al.2019. Generation of pluripotent stem cell-derived mouse kidneys in Sall1-targeted anephric rats[J]. Nature Communications, 10(1): 451. [16] Griffith B P, Grazioli A, Singh A K, et al.2025. Transplantation of a genetically modified porcine heart into a live human[J]. Nature Medicine, 31(2): 589-598. [17] Han X, Chen M, Wang F, et al.2013. Forebrain engraftment by human glial progenitor cells enhances synaptic plasticity and learning in adult mice[J]. Cell Stem Cell, 12(3): 342-353. [18] Hashimoto H, Eto T, Yamamoto M.et al.2019. Development of blastocyst complementation technology without contributions to gametes and the brain[J]. Experimental Animals, 68(3): 361-370. [19] Hirsch T, Rothoeft T, Teig N, et al.2017. Regeneration of the entire human epidermis using transgenic stem cells[J]. Nature, 551(7680): 327-332. [20] Hu Y, Yang Y, Tan P, et al.2023. Induction of mouse totipotent stem cells by a defined chemical cocktail[J]. Nature, 617(7962): 792-797. [21] Hu Z, Li H, Jiang H, et al.2020. Transient inhibition of mTOR in human pluripotent stem cells enables robust formation of mouse-human chimeric embryos[J]. Science Advances, 6(20): eaaz0298. [22] Huang J, He B, Yang X, et al.2024. Generation of rat forebrain tissues in mice[J]. Cell, 187(9): 2129-2142.e2117. [23] Huang Y, Osorno R, Tsakiridis A, et al.2012. In vivo differentiation potential of epiblast stem cells revealed by chimeric embryo formation[J]. Cell Reports, 2(6): 1571-1578. [24] Hyun I.2019. Ethical considerations for human-animal neurological chimera research: Mouse models and beyond[J]. The EMBO Journal, 38(21): e103331. [25] Kim J, Koo B K, Knoblich J A, et al.2020. Human organoids: Model systems for human biology and medicine[J]. Nature Reviews Molecular Cell Biology, 21(10): 571-584. [26] Kitahara A, Ran Q, Oda K, et al.2020. Generation of lungs by blastocyst complementation in apneumic Fgf10-deficient mice[J]. Cell Reports, 31(6): 107626. [27] Kobayashi T, Goto T, Oikawa M, et al.2021. Blastocyst complementation using Prdm14-deficient rats enables efficient germline transmission and generation of functional mouse spermatids in rats[J]. Nature Communications, 12(1): 1328. [28] Kobayashi T, Kato-Itoh M, Nakauchi H, et al.2015. Targeted organ generation using Mixl1-inducible mouse pluripotent stem cells in blastocyst complementation[J]. Stem Cells and Development, 24(2): 182-189. [29] Kobayashi T, Yamaguchi T, Hamanaka S, et al.2010. Generation of rat pancreas in mouse by interspecific blastocyst injection of pluripotent stem cells[J]. Cell, 142(5): 787-799. [30] Liu T, Li J, Yu L, et al.2021. Cross-species single-cell transcriptomic analysis reveals pre-gastrulation developmental differences among pigs, monkeys, and humans[J]. Cell Discovery, 7(1): 8. [31] Liu Y A, Yang C Y, Tarng D C, et al.2024. Challenges in pig-to-human kidney xenotransplantation[J]. Lancet, 403(10444): 2595. [32] Mascetti V L, Pedersen R A.2021. Human-monkey chimeras: Monkey see, monkey do[J]. Cell Stem Cell, 28(5): 787-789. [33] Matsunari H, Watanabe M, Hasegawa K, et al.2020. Compensation of disabled organogeneses in genetically modified pig fetuses by blastocyst complementation[J]. Stem Cell Reports, 14(1): 21-33. [34] Mazid M A, Ward C, Luo Z, et al.2022. Rolling back human pluripotent stem cells to an eight-cell embryo-like stage[J]. Nature, 605(7909): 315-324. [35] Mori M, Furuhashi K, Danielsson J A, et al.2019. Generation of functional lungs via conditional blastocyst complementation using pluripotent stem cells[J]. Nature Medicine, 25(11): 1691-1698. [36] Muotri A R, Nakashima K, Toni N, et al.2005. Development of functional human embryonic stem cell-derived neurons in mouse brain[J]. Proceedings of the National Academy of Sciences of the USA, 102(51): 18644-18648. [37] Okumura H, Nakanishi A, Toyama S, et al.2019. Contribution of rat embryonic stem cells to xenogeneic chimeras in blastocyst or 8-cell embryo injection and aggregation[J]. Xenotransplantation, 26(1): e12468. [38] Ott H C, Matthiesen T S, Goh S K, et al.2008. Perfusion-decellularized matrix: Using nature's platform to engineer a bioartificial heart[J]. Nature Medicine, 14(2): 213-221. [39] Peterson L, Yacoub M H, Ayares D, et al.2024. Physiological basis for xenotransplantation from genetically modified pigs to humans[J]. Physiological Reviews, 104(3): 1409-1459. [40] Rafat M, Jabbarvand M, Sharma N, et al.2023. Bioengineered corneal tissue for minimally invasive vision restoration in advanced keratoconus in two clinical cohorts[J]. Nature Biotechnology, 41(1): 70-81. [41] Rashid T, Kobayashi T, Nakauchi H, et al.2014. Revisiting the flight of Icarus: Making human organs from PSCs with large animal chimeras[J]. Cell Stem Cell, 15(4): 406-409. [42] Raz R, Lee C K, Cannizzaro L A, et al.1999. Essential role of STAT3 for embryonic stem cell pluripotency[J]. Proceedings of the National Academy of Sciences of the USA, 96(6): 2846-2851. [43] Ruiz-Estevez M, Crane A T, Rodriguez-Villamil P, et al.2021. Liver development is restored by blastocyst complementation of HHEX knockout in mice and pigs[J]. Stem Cell Research & Therapy, 12(1): 292. [44] Shen H, Yang M, Li S, et al.2021. Mouse totipotent stem cells captured and maintained through spliceosomal repression[J]. Cell, 184(11): 2843-2859.e2820. [45] Taei A, Kiani T, Taghizadeh Z, et al.2020. Temporal activation of LRH-1 and RAR-gamma in human pluripotent stem cells induces a functional naive-like state[J]. EMBO Reports, 21(10): e47533. [46] Tan T, Wu J, Si C, et al.2021. Chimeric contribution of human extended pluripotent stem cells to monkey embryos ex vivo[J]. Cell, 184(8): 2020-2032.e2014. [47] Taubenschmid-Stowers J, Rostovskaya M, Santos F, et al.2022. 8C-like cells capture the human zygotic genome activation program in vitro[J]. Cell Stem Cell, 29(3): 449-459.e446. [48] Thomson J A, Itskovitz-Eldor J, Shapiro S S, et al.1998. Embryonic stem cell lines derived from human blastocysts.[J]. Science, 282(5391): 1145-1147. [49] Throesch B T, Bin Imtiaz M K, Munoz-Castaneda R, et al.2024. Functional sensory circuits built from neurons of two species[J]. Cell, 187(9): 2143-2157.e2115. [50] Usui J, Kobayashi T, Yamaguchi T, et al.2012. Generation of kidney from pluripotent stem cells via blastocyst complementation[J]. The American Journal of Pathology, 180(6): 2417-2426. [51] Wang J, Xie W, Li N, et al.2023. Generation of a humanized mesonephros in pigs from induced pluripotent stem cells via embryo complementation[J]. Cell Stem Cell, 30(9): 1235-1245.e1236. [52] Wang X, Li T, Cui T, et al.2018. Human embryonic stem cells contribute to embryonic and extraembryonic lineages in mouse embryos upon inhibition of apoptosis[J]. Cell Research, 28(1): 126-129. [53] Wang X, Shi H, Zhou J, et al.2020. Generation of rat blood vasculature and hematopoietic cells in rat-mouse chimeras by blastocyst complementation[J]. Journal of Genetics and Genomics, 47(5): 249-261. [54] West F D, Uhl E W, Liu Y, et al.2011. Brief report: Chimeric pigs produced from induced pluripotent stem cells demonstrate germline transmission and no evidence of tumor formation in young pigs[J]. Stem Cells, 29(10): 1640-1643. [55] Windrem M S, Schanz S J, Morrow C, et al.2014. A competitive advantage by neonatally engrafted human glial progenitors yields mice whose brains are chimeric for human glia[J]. The Journal of Neuroscience, 34(48): 16153-16161. [56] Wu J, Fu J.2024. Toward developing human organs via embryo models and chimeras[J]. Cell, 187(13): 3194-3219. [57] Wu J, Greely H T, Jaenisch R, et al.2016. Stem cells and interspecies chimaeras[J]. Nature, 540(7631): 51-59. [58] Wu J, Platero-Luengo A, Sakurai M, et al.2017. Interspecies chimerism with mammalian pluripotent stem cells[J]. Cell, 168(3): 473-486.e415. [59] Yamaguchi T, Sato H, Kato-Itoh M, et al.2017. Interspecies organogenesis generates autologous functional islets[J]. Nature, 542(7640): 191-196. [60] Yamaguchi T, Sato H, Kobayashi T, et al.2018. An interspecies barrier to tetraploid complementation and chimera formation[J]. Scientific Reports, 8(1): 15289. [61] Yang J, Ryan D J, Wang W, et al.2017. Establishment of mouse expanded potential stem cells[J]. Nature, 550(7676): 393-397. [62] Ying Q L, Wray J, Nichols J, et al.2008. The ground state of embryonic stem cell self-renewal[J]. Nature, 453(7194): 519-523. [63] Zheng C, Hu Y, Sakurai M, et al.2021. Cell competition constitutes a barrier for interspecies chimerism[J]. Nature, 592(7853): 272-276. [64] Zvick J, Tarnowska-Sengul M, Ghosh A, et al.2022. Exclusive generation of rat spermatozoa in sterile mice utilizing blastocyst complementation with pluripotent stem cells[J]. Stem Cell Reports, 17(9): 1942-1958. |
|
|
|