|
|
Isolation, Identification and Degradation Characteristics of Highly Efficient Antibiotic Degrading Strains in Silkworm (Bombyx mori) Excrement |
KONG Jia1, LI Hao1,2, JIANG Xue-Ping1, ZHOU Jie-Ling1, ZHANG Yuan-Hao1, CHEN Chen1, ZHANG Ran1,2, GUI Zhong-Zheng1,2,* |
1 School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; 2 Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Zhenjiang 212100, China |
|
|
Abstract Ciprofloxacin (CIP) and chloramphenicol (CAP), as commonly used veterinary antibiotics, persistently accumulate in the environment and pose significant ecological risks by potentially enhancing microbial resistance and threatening ecosystem and public health. In this study, a strain SMX capable of simultaneously degrading CIP and CAP from fermented silkworm (Bombyx mori) excrement was isolated, and identified as Phytobacter diazotrophicus through whole-genome sequencing. Then the process conditions for degrading antibiotics by strain SMX were optimized, the degradation efficiency of antibiotics was analyzed using high-performance liquid chromatography (HPLC), and the toxicity of the degradation solution to bioindicator bacteria was evaluated. Results showed that, the optimal conditions for strain SMX to degrade CIP were CIP initial concentration of 2.5 mg/L, 30 ℃, pH 8.0, and 3% inoculation amount, the optimal conditions for strain SMX to degrade CAP were CAP initial concentration of 10 mg/L, 30 ℃, pH 7.0, and 3% inoculation amount. HPLC analysis revealed that after being treated with strain SMX for 72 h, the degradation efficiencies of CIP and CAP were 87.37% and 86.32%, respectively. The degradation solution of strain SMX had almost no toxicity to bioindicator bacteria. These results showed that P. diazotrophicus strain SMX was an efficient and environmentally safe CIP/CAP degradation bacterium, which could play an active role in the prevention and control of antibiotic co-contamination. This study provides technical support for the biodegradation of antibiotic substances.
|
Received: 17 October 2024
|
|
Corresponding Authors:
*srizzgui@hotmail.com
|
|
|
|
[1] Buchanan R E, Gibbons N E.1984. 伯杰氏细菌鉴定手册[M]. 北京: 科学出版社, pp. 729-732. (Buchanan R E, Gibbons N E.1984. Bergey's Manual of Determinative Bacteriology[M]. Science Press, Beijing, China, pp. 729-732.) [2] 陈乐乐. 2018. 蚕沙饲料用预加工方式及其亚硝酸盐降解措施的研究[D]. 硕士学位论文, 华南农业大学, 导师: 廖森泰, 刘吉平, pp. 12-65. (Chen L L.2018. Study on pretreatment method of silkworm excrement feed and its nitrite degradation measures[D]. Thesis for M.S., South China Agricultural University, Supervisor: Liao S T, Liu J P, pp. 60-65.) [3] 陈田, 周佳, 汪依萍, 等. 2024. 氯霉素降解菌Pseudoxanthomonas mexicana CC18的筛选、鉴定和降解特性[J]. 生物学杂志, 41(01): 94-99. (Chen T, Zhou J, Wang Y P, et al.2024. Isolation, identification and degradation characteristics of a chloramphenicol-degrading bacterium, Pseudoxanthomonas mexicana CC18[J]. Journal of Biology, 41(01): 94-99.) [4] 陈昱如, 段艳平, 张智博, 等. 2023. 长江经济带水环境中抗生素人体健康风险评价[J].中国环境科学, 43(07): 3713-3729. (Chen Y R, Duan Y P, Zhang Z B, et al.2023. Human health risk assessment of antibiotics in the water environment of Yangtze river economic belt[J]. China Environmental Science, 43(07): 3713-3729.) [5] 东秀珠, 蔡妙英. 2001. 常见细菌系统鉴定手册[M]. 北京: 科学出版社, pp. 43-64. (Dong X Z, Cai M Y.2001. Common Manual of Systematic Bacteriological Identification[M]. Science Press, Beijing, China, pp. 43-64.) [6] 何振贤, 陶雪琴, 孙建腾. 2024. 沿海三省区农田土壤抗生素的残留与生态风险评估[J]. 农业环境科学学报, 43(09): 2002-2013. (He Z X, Tao X Q, Sun J T.2024. Residue and risk assessment of antibiotics in farmland soils in coastal areas[J]. Journal of Agro-Environment Science, 43(09): 2002-2013.) [7] 郭晨蕾. 2021. 一株氯霉素降解细菌的分离鉴定及其降解特性研究[D]. 硕士学位论文, 哈尔滨工业大学, 导师: 王爱杰, pp. 10-15. (Guo C L.2021. Isolation, identification and degradation characteristics of a chloramphenicol-degrading bacteria[D]. Thesis for M.S., Harbin Institute of Technology, Supervisor: Wang A J, pp. 10-15.) [8] 陆方苗, 黄洁薇, 欧壮兵, 等. 2023. 7种抗菌药物协同抗家蚕病原细菌效果[J]. 广西蚕业, 60(02): 26-30. (Lu F M, Huang J W, Ou Z B, et al.2023. Synergistic effects of seven antibacterial agents against pathogenic bacteria in silkworms[J]. Guangxi Sericulture, 60(02): 26-30.) [9] 梁香, 崔凤云, 朱绍华, 等. 2024. QuEChERS-HPLC-MS/MS法检测蚕砂中氯霉素残留量[J]. 质量安全与检验检测, 34(02): 1-7. (Liang X, Cui F Y, Zhu S H, et al.2024. Determination of chloramphenicol residues in silkworm excrement-high performance liquid chromatography-tandem mass spectrometry method with QuEChERS[J]. Quality Safety Inspection and Testing, 34(02): 1-7.) [10] 孙若梅. 2018. 畜禽养殖废弃物资源化的困境与对策[J]. 社会科学家, (02): 22-26. (Sun R M. 2018. Dilemmas and countermeasures of livestock and poultry waste resource utilization[J]. Social Scientist, (02): 22-26.) [11] 谭汪英, 贾雪峰, 黄胜, 等. 2018. 抗生素类蚕药的使用分析及讨论[J]. 广西蚕业, 55(02): 35-38. (Tang W Y, Jia X F, Huang S, et al.2018. Analysis and discussion on the use of antibiotic drugs in sericulture[J]. Guangxi Sericulture, 55(02): 35-38.) [12] 吴刚. 2013. 浅谈蚕药的使用[J]. 蚕桑通报, 44(04): 56-57. (Wu G.2013. A brief discussion on the use of silkworm drugs[J]. Bulletin of Sericulture, 44(04): 56-57.) [13] 许建平, 乔福元, 刘海意, 等. 2004. 三维超声对妊娠前及早期妊娠阶段意外接触致畸物质者胎儿结局的监测[J]. 医学临床研究,(09): 998-1002+1006. (Xu J P, Qiao F Y, Liu H Y, et al.2004. Three dimensional ultrasound monitoring of the fetal outcome iinfluenced by contacting teratogenic factors during early pregnancy[J]. Journal of Clinical Research,(09): 998-1002+1006.) [14] 喻娇. 2017. 环丙沙星(CIP)降解菌群驯化及降解特性初步研究[D]. 硕士学位论文, 暨南大学, 导师: 莫测辉, pp. 25-31. (Yu J.2017. Domestication of CIP-degrading bacterial consortium and preliminary studyon their degradation characteristics[D]. Thesis for M.S., Jinan University, Supervisor: Mo C H, pp. 25-31.) [15] 张婷, 屠曾宏. 2003. 氟喹诺酮炎药物的光毒性[J]. 世界临床药物, (03): 167-170. (Zhang T, Tu Z H. 2003. Phototoxicity of fluoroquinolone drugs[J]. World Clinical Drug, (03): 167-170.) [16] Abu-Hussien S H, Hemdan B A, Alzahrani O M, et al.2022. Microbial degradation, spectral analysis and toxicological assessment of malachite green dye by Streptomyces exfoliatus[J]. Molecules, 27(19): 6456. [17] Ali, Q, Zainab, R, Badshah, M, et al.2024. Prospecting the biodegradation of ciprofloxacin by Stutzerimonas stutzeri R2 and Exiguobacterium indicum strain R4 isolated from pharmaceutical wastewater[J]. H2Open Journal, 7(2): 149-162. [18] Ben Y J, Hu M, Zhong F X, et al.2022. Human daily dietary intakes of antibiotic residues: Dominant sources and health risks[J]. Environmental Research, 212(Pt C): 113387. [19] Chollom M N, Bakare B F, Rathilal S, et al.2022. Evaluating the biodegradation of veterinary antibiotics using kinetics model and response surface methodology[J]. Molecules, 27(17): 5402. [20] Cummings E D, Kong E L, Edens M A.2023. Gray Baby Syndrome[M]. StatPearls Publishing, Treasure Island (FL), pp. 22-86. [21] Dai J X, Wang Y, Lin H, et al.2023. Residue screening and analysis of enrofloxacin and its metabolites in real aquatic products based on ultrahigh-performance liquid chromatography coupled with high resolution mass spectrometry[J]. Food Chemistry, 404(Pt B): 134757. [22] Dogan Y N, Pamuk Ş, Gurler Z.2020. Chloramphenicol and sulfonamide residues in sea bream (Sparus aurata) and sea bass (Dicentrarchus labrax) fish from aquaculture farm[J]. Environmental Science and Pollution Research International, 27(33): 41248-41252. [23] Fang H, Oberoi A S, He Z Q, et al.2021. Ciprofloxacin-degrading Paraclostridium sp. isolated from sulfate-reducing bacteria-enriched sludge: Optimization and mechanism[J]. Water Research, 191: 116808. [24] Fischer, K., Majewsky, M.2014. Cometabolic degradation of organic wastewater micropollutants by activated sludge and sludge-inherent microorganisms[J]. Applied Microbiology and Biotechnology. 98: 6583-6597. [25] Gould J W, Mercurio M G, Elmets C A.1995. Cutaneous photosensitivity diseases induced by exogenous agents[J]. Journal of the American Academy of Dermatology, 33(4): 551-573. [26] Jiang X, Li H, Kong J, et al.2024. Comprehensive analysis of biotransformation pathways and products of chloramphenicol by Raoultella Ornithinolytica CT3: Pathway elucidation and toxicity assessment[J]. Journal of Hazardous Materials, 480: 136199. [27] Kang J, Wang L, Chen X L, et al.2001. Interactions of a series of fluoroquinolone antibacterial drugs with the human cardiac K+ channel HERG[J]. Molecular Pharmacology, 59(1): 122-126. [28] Kubota H, Nakayama T, Ariyoshi T, et al.2023. Emergence of Phytobacter diazotrophicus carrying an IncA/C2 plasmid harboring blaNDM-1 in Tokyo, Japan[J]. Msphere, 8(4): e0014723. [29] Luo L, Lu S Y, Huang C P, et al.2021. A survey of chloramphenicol residues in aquatic products of Shenzhen, South China[J]. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment, 38(6): 914-921. [30] Ma X D, Qi M Y, Li Z L, et al.2019. Characterization of an efficient chloramphenicol-mineralizing bacterial consortium[J]. Chemosphere, 222: 149-155. [31] Nguyen L M, Nguyen N T T, Nguyen T T T, et al.2022. Occurrence, toxicity and adsorptive removal of the chloramphenicol antibiotic in water: A review[J]. Environmental Chemistry Letters, 20(3): 1929-1963. [32] Nguyen L N, Nghiem L D, Oh S.2018. Aerobic biotransformation of the antibiotic ciprofloxacin by Bradyrhizobium sp. isolated from activated sludge[J]. Chemosphere, 211: 600-607. [33] Pan L J, Li J, Li C X, et al.2018. Study of ciprofloxacin biodegradation by a Thermus sp. isolated from pharmaceutical sludge[J]. Journal of Hazardous Materials, 343: 59-67. [34] Peng P C, Wang Y, Liu L Y, et al.2016. The excretion and environmental effects of amoxicillin, ciprofloxacin, and doxycycline residues in layer chicken manure[J]. Poultry Science, 95(5): 1033-1041. [35] Reis A C, Kolvenbach B A, Nunes O C, et al.2020. Biodegradation of antibiotics: The new resistance determinants - part I[J]. New Biotechnology, 54: 34-51. [36] Saeed M U, Hussain N, Sumrin A, et al.2022. Microbial bioremediation strategies with wastewater treatment potentialities - A review[J]. The Science of the total Environment, 818: 151754. [37] Schildt J, Rudiger M, Richter A, et al.2021. Investigation on the uptake of ciprofloxacin, chloramphenicol and praziquantel by button mushrooms[J]. Food Chemistry, 362: 130092. [38] Scripca L A, Amariei S.2021. The influence of chemical contaminants on the physicochemical properties of unifloral and multifloral honey[J]. Foods, 10(5): 1039. [39] Shaker R A E, Nagy Y I, Adly M E, et al.2022. Acinetobacter baumannii, Klebsiella pneumoniae and Elizabethkingia miricola isolated from wastewater have biodegradable activity against fluoroquinolone[J]. World Journal of Microbiology and Biotechnology, 38(11): 187. [40] Shi Y K, Lin H, Ma J W, et al.2021. Degradation of tetracycline antibiotics by Arthrobacter nicotianae OTC-16[J]. Journal of Hazardous Materials, 403: 123996. [41] Song M, Han C, Liu L, et al.2023. MIST: A microbial identification and source tracking system for next-generation sequencing data[J]. iMeta, 2(4): e146. [42] Sun J T, Zeng Q T, Tsang D C W, et al.2017. Antibiotics in the agricultural soils from the Yangtze River Delta, China[J]. Chemosphere, 189: 301-308. [43] Tan Z W, Yang X Y, Chen L, et al.2022. Biodegradation mechanism of chloramphenicol by Aeromonas media SZW3 and genome analysis[J]. Bioresource Technology, 344(Pt B): 126280. [44] Tan Z W, Yang X Y, Liu Y L, et al.2023. The capability of chloramphenicol biotransformation of Klebsiella sp. YB1 under cadmium stress and its genome analysis[J]. Chemosphere, 313: 137375. [45] Valdes M E, Santos L H M L M, Castro M C R, et al.2021. Distribution of antibiotics in water, sediments and biofilm in an urban river (Córdoba, Argentina, LA)[J]. Environmental Pollution, 269: 116133. [46] Wang H D, Wang Q N, Lv M, et al.2024. Study on the degradation and metabolic mechanism of four quinolone antibiotics by mixed strains[J]. Frontiers in Environmental Chemistry, 5: 1326206. [47] Wang Y Y, Zhang W W, Mhungu F, et al.2021. Probabilistic risk assessment of dietary exposure to chloramphenicol in Guangzhou, China[J]. International Journal of Environmental Research and Public Health, 18(16): 8805. [48] Yuan Y H, Zhang F F, Wang H Y, et al.2018. A sensor based on Au Nanoparticles/Carbon Nitride/Graphene composites for the detection of chloramphenicol and ciprofloxacin[J]. ECS Journal of Solid State Science and Technology, 7(12): M201-M208. [49] Zhang G X, Peng G X, Wang E T, et al.2008. Diverse endophytic nitrogen-fixing bacteria isolated from wild rice Oryza rufipogon and description of Phytobacter diazotrophicus gen. nov. sp. nov.[J]. Archives of Microbiology, 189(5): 431-439. [50] Zhang J Y, Li X Y, Klumper U, et al.2022. Deciphering chloramphenicol biotransformation mechanisms and microbial interactions via integrated multi-omics and cultivation-dependent approaches[J]. Microbiome, 10(1): 180. [51] Zhang J Y, Zhao R X, Cao L J, et al.2020. High-efficiency biodegradation of chloramphenicol by enriched bacterial consortia: Kinetics study and bacterial community characterization[J]. Journal of Hazardous Materials, 384: 121344. |
[1] |
ZHANG Ya-Ru, REN Jing, ZHANG Wei-Tao, WANG Shu-Xiang, WANG Shuo, MA Fei-Yu, LI Shu-Na, LI Hong-Ya. Screening, Identification and Lignin-degradation Characteristics of Bacillus amyloliquefaciens MN-13[J]. 农业生物技术学报, 2021, 29(7): 1389-1399. |
|
|
|
|