|
|
Tissue Expression of TMEM18 Gene and Correlation Analysis Between Its Polymorphism and Feed Conversion Ratio in Hu Sheep (Ovis aries) |
LIU Xiao-Qiang1, LI Cheng-Hai2, WANG Wei-Min3, GAO Fei2, TIAN Hui-Bin3, WANG Li-Zhong2, ZHAO Yuan3, MA Zong-Wu1, HUANG Zhi-Qiang1, CAI You-Xin1, ZHANG Xiao-Xue1,* |
1 College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; 2 Jinchuan Group Co., Ltd., Jinchang Jujia Ecological Agriculture Co., Ltd., Jinchang 737100, China; 3 College of Grassland Agricultural Science and Technology/State Key Laboratory of Grassland Agroecosystems, Lanzhou University, Lanzhou 730000, China |
|
|
Abstract Transmembrane protein 18 (TMEM18) is an important candidate gene for animal growth and development, encoding a transmembrane protein with important biological functions. In order to explore the expression pattern of TMEM18 gene in sheep (Ovis aries) tissues, the correlation between it's polymorphism and feed conversion ratio (FCR), and molecular genetic markers for breeding were searched. Based on a population of 845 Hu sheep with clear pedigrees and complete phenotypic records, this research utilized qRT-PCR technology to detect the expression levels of the TMEM18 gene in 10 tissues of Hu sheep and employed Sanger sequencing technology to scan for SNPs in this gene, which were then analyzed for association with feed efficiency traits. The results showed that the relative expression of the TMEM18 gene was significantly higher in the heart than in other tissues (P<0.05), followed by high relative expression in the duodenum, rumen, lungs, and liver. A synonymous mutation polymorphism site, g.517832 T>C, was detected in the third intron of the sheep TMEM18 gene. The results of multiple comparisons showed that the mutation locus was significantly associated with FCR100~120, FCR140~160, FCR80~120, FCR140~180, FCR100~160, FCR80~160, FCR100~180 and FCR80~180 (P<0.05), among them, FCR140~160, FCR100~160, FCR80~160, FCR100~180 and FCR80~180 with CC genotype were significantly higher than those of TT genotype and TC genotype (P<0.05). The results of this study suggested that TMEM18 g.517832 T>C site could be used as a candidate molecular marker to improve feed efficiency in sheep. This study provides reliable genetic materials for the breeding of grain-saving varieties.
|
Received: 12 June 2024
|
|
Corresponding Authors:
* zhangxx@gsau.edu.cn
|
|
|
|
[1] 曹春娜. 2023. 基于全基因组数据的绵羊繁殖相关基因挖掘及功能研究[J]. 博士学位论文, 西北农林科技大学, 导师: 潘传英, pp. 46-74. (Cao C N.2023. Mining and functional research on sheep reproduction-related genes based on whole genome data[J]. Thesis for Ph.D., Northwest A&F University,Supervisor: Pan C Y, pp. 46-74.) [2] 程江博, 张德印, 张煜坤, 等. 2022. 湖羊CNTF基因组织表达、SNPs扫描及其与生长性状关联分析[J]. 农业生物技术学报, 30(03): 506-516. (Cheng J B, Zhang D Y, Zhang Y K, et al.2022. Tissue expression, SNPs scanning, and association analysis of CNTF gene with growth traits in Hu sheep[J]. Journal of Agricultural Biotechnology, 30(03): 506-516.) [3] 耿雅帆, 徐尚荣, 彭巍, 等. 2023. 牦牛产肉性能相关基因的研究进展[J]. 中国牛业科学, 49(05): 68-72. (Geng Y F, Xu S R, Peng W, et al.2023. Research progress on genes related to yak meat production performance[J].China Cattle Industry Science, 49(05): 68-72.) [4] 郭云霞, 周霞, 高嘉豪. 2021. 蚕豆秸秆作为粗饲料对绵羊生长性能、养分消化及胴体性状的影响[J]. 中国饲料, (24): 119-122. (Guo Y X, Zhou X, Gao J H. 2021. Effect of broad bean straw as roughage on growth performance, nutrient digestion and carcass traits in sheep[J].China Feed, (24): 119-122.) [5] 何茹月, 刘壮, 吴海军, 等. 2024. 荷斯坦奶牛GlyRS基因的克隆、组织表达及生物信息学分析[J]. 中国畜牧杂志, 60(04): 284-291. (He R Y, Liu Z, Wu H J, et al.2024.Cloning, tissue expression and bioinformatics analysis of GlyRS gene in Holstein cows[J]. Chinese Journal of Animal Husbandry, 60(04): 284-291.) [6] 李勤, 魏小英, 杜成松, 等. 2023. 湖羊的生产性能研究进展[J].农业与技术, 43(22): 84-87. (Li Q, Wei X Y, Du C S, et al.2023. Research progress on production performance of Hu sheep[J]. Agriculture and Technology, 43(22): 84-87.) [7] 马伟, 马云, 刘栋, 等. 2011. 黄牛TMEM18基因SNP检测及其与生长性状的关联分析[C]//中国畜牧兽医学会养牛学分会. 中国畜牧兽医学会养牛学分会2011年学术研讨会论文集. 《中国牛业科学》编辑部(Editorial Department of China Cattle Science), 2011: 2., 2011: 2.) [8] 马伟. 2012. 牛TMEM18基因克隆、SNP检测及其与部分经济性状的关联分析[D]. 硕士学位论文, 西北农林科技大学, 导师: 陈宏, pp. 24-35. (Ma W.2012. Cloning and SNP detection of TMEM18 gene in cattle and its association with some economic traits[D].Thesis for M. S., Northwest A&F University, Supervisor: Chen H, pp. 24-35.) [9] 曾凡林, 李涛, 陈宇, 等. 2024. 不同猪品种的饲料转化效率比较分析[J]. 中国畜牧杂志, 60(03): 155-160. (Zeng F L, Li T, Chen Y, et al.2024. Comparative analysis of feed conversion efficiency among different pig breeds[J]. Chinese Journal of Animal Science, 60(03): 155-160.) [10] 张德印, 张小雪, 李发弟, 等. 2020. 不同饲料效率与绵羊瘤胃组织形态学关系[J]. 中国农业科学, 53(24): 5115-5124. (Zhong D Y, Zhang X X, Li F D, et al.2020. Relationship between different feed efficiency and rumen histomorphology of sheep[J]. Chinese Journal of Agricultural Sciences, 53(24): 5115-5124.) [11] 张欢. 2018. 牦牛TMEM18基因多态性及其功能研究[D]. 硕士学位论文, 甘肃农业大学, 导师: 赵兴绪, pp. 31-41. (Zhong H.2018.Study on the polymorphism and function of TMEM18 gene in yak [D]. Thesis for M. S., Gansu Agricultural University, Supervisor: Zhao X X, pp. 31-41.) [12] 张丽波, 刘雨宣, 王涤非, 等. 2024. IGF-1基因同义突变对MC3T3-E1成骨细胞分化的影响[J/OL]. 吉林农业大学学报, 1-7. (Zhang L B, Liu Y X, Wang D F, et al.2024. Effect of IGF-1 gene synonymous mutation on MC3T3-E1 osteoblast differentiation[J/OL]. Journal of Jilin Agricultural University, 1-7.) [13] 张帅, 陈奎蓉, 许迪, 等. 2024. 基于16S rRNA测序分析高低饲料转化率猪粪便微生物的组成差异[J]. 畜牧兽医学报, 55(04): 1605-1614. (Zhang S, Chen K R, Xu D, et al.2024. Analysis of microbial composition differences in pig feces with high and low feed conversion rates based on 16S rRNA sequencing[J]. Journal of Animal Husbandry and Veterinary Medicine, 55(04): 1605-1614.) [14] 章继忠. 2023. 肉羊的饲养管理技术[J]. 今日畜牧兽医, 39(12): 47-49. (Zhang J Z.2023. Breeding and management technology of meat sheep[J]. Animal Husbandry and Veterinary Medicine Today, 39(12): 47-49.) [15] 钟欣, 张晖, 张充, 等. 2024. 母猪繁殖力基因遗传育种研究进展[J]. 畜牧兽医学报, 55(02): 438-450. (Zhong X, Zhang H, Zhang C, et al.2024. Research progress on genetic breeding of sow fertility genes[J]. Journal of Animal Husbandry and Veterinary Medicine, 55(02): 438-450.) [16] Almén M S, Jacobsson J A, Shaik J H, et al.2010. The obesity gene, TMEM18, is of ancient origin, found in majority of neuronal cells in all major brain regions and associated with obesity in severely obese children[J]. BMC Medical Genetics, 11: 1-13. [17] Chacko Kaitholil S R, Mooney M H, Aubry A, et al.2024. Insights into the influence of diet and genetics on feed efficiency and meat production in sheep[J]. Animal Genetics, 55(1): 20-46. [18] Gabriel S, Ziaugra L, Tabbaa D.2009. SNP genotyping using the Sequenom MassARRAY iPLEX platform[J]. Current Protocols in Human Genetics, 60(1): 2.12.1-2.12.18. [19] Guinguina A, Yan T, Bayat A, et al.2020. The effects of energy metabolism variables on feed efficiency in respiration chamber studies with lactating dairy cows[J]. Journal of Dairy Science, 103(9): 7983-7997. [20] Jurvansuu J, Zhao Y, Leung D S, et al.2008. Transmembrane protein 18 enhances the tropism of neural stem cells for glioma cells[J]. Cancer Research, 68(12): 4614-4622. [21] Jurvansuu J M, Goldman A.2011. Obesity risk gene TMEM18 encodes a sequence-specific DNA-binding protein[J]. PLOS ONE, 6(9): e25317. [22] Landgraf K, Klöting N, Gericke M, et al.2020. The obesity-susceptibility gene TMEM18 promotes adipogenesis through activation of PPARG[J]. Cell Reports, 33(3): 108295. [23] Larder R, Sim M F M, Gulati P, et al.2017. Obesity-associated gene TMEM18 has a role in the central control of appetite and body weight regulation[J]. Proceedings of the National Academy of Sciences of the USA, 114(35): 9421-9426. [24] Liu K, Peng Y, Lin L, et al.2022. L-Theanine regulates the abundance of amino acid transporters in mice duodenum and jejunum via the mTOR signaling pathway[J]. Nutrients, 15(1): 142. [25] Pan Y, Wang M, Wu H, et al.2022. Indel mutations of sheep PLAG1 gene and their associations with growth traits[J]. Animal Biotechnology, 33(7): 1459-1465. [26] Wang S Y, Cheng Y Y, Liu S C, et al.2021. A synonymous mutation in IGF-1 impacts the transcription and translation process of gene expression[J]. Molecular Therapy. Nucleic Acids, 26: 1446-1465. [27] Yamashita R, Suzuki Y, Takeuchi N, et al.2008. Comprehensive detection of human terminal oligo-pyrimidine (TOP) genes and analysis of their characteristics[J]. Nucleic Acids Research, 36(11): 3707-3715. [28] Zhang D, Zhang X, Li F, et al.2021. Polymorphisms in ovine ME1 and CA1 genes and their association with feed efficiency in Hu sheep[J].Journal of Animal Breeding and Genetics, 138(5): 589-599. [29] Zhao L, Li F, Yuan L, et al.2022. Expression of ovine CTNNA3 and CAP2 genes and their association with growth traits[J]. Gene, 807: 145949. [30] Zeng X, Wang W, Zhang D, et al.2023. Expression of the ovine gene and the relationship between its polymorphism and feed efficiency traits[J]. DNA and Cell Biology, 42(4): 194-202. |
|
|
|