|
|
Effects of Bacterial Enzyme Compound Preparation on Growth Performance, Serum Indexes and Fecal Microorganisms of Hu Sheep (Ovis aries) |
QI Shuai1, CANG Zhen1, NIU Wei-Qiang2, LI Peng2, ZHANG Ji-Xin2, MAO Da-Gan1,* |
1 College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095; 2 Qidong Ruipeng Animal Husbandry Co., Ltd., Nantong 226200, China |
|
|
Abstract Highly intensive breeding of mutton sheep (Ovis aries) can easily lead to oxidative stress, reduce body resistance, disturb gastrointestinal flora, and affect growth performance. Dietary bacterial enzyme compound preparation can improve intestinal flora structure, nutrient digestibility and animal growth performance. This study aimed to investigate the effects of bacterial enzyme compound preparation on growth performance, serum indexes and fecal microorganisms of Hu sheep. A total of 48 male Hu lambs ((18.00±2.00) kg) aged 2 months were randomly assigned into 4 groups. Lambs in Group C (control) were fed a basal diet, and the other 3 groups were fed a basal diet with 0.1% (Group 1), 0.2% (Group 2) and 0.3% (Group 3) bacterial enzyme preparation, respectively. The feeding included a pre-experiment for 7 d and a formal experiment for 60 d. Results showed that, compared with Group C, average daily gain (ADG) in Group 1 and Group 2 increased significantly (P<0.05), and the feed to gain ratio (F/G) significantly decreased in all groups (P<0.05) during 31~60 d and 1~60 d; serum albumin ( ALB) and glucose (GLU) content in all groups and high density lipoprotein in Group 1 increased significantly (P<0.05); serum activity of superoxidized dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) increased significantly in all groups (P<0.05); serum immunoglobulin (Ig) IgA and IgG increased significantly in all groups (P<0.05), and serum IgM increased significantly in Group 3 (P<0.05); the apparent digestibility of neutral detergent fibre (NDF) and acid detergent fibre (ADF) in Group 2 significantly increased (P<0.05). At phylum level, the abundance of Verrucomicrobiota increased significantly (P<0.05), while Cyanobacteria and Campylobacterota decreased significantly (P<0.05). At genus level, the abundances of Alistipes and Prevotellaceae_UCG-001 significantly increased (P<0.05), while Candidatus_Saccharimonas significantly decreased (P<0.05). In conclusion, the bacterial enzyme compound preparation could improve the growth performance, antioxidant and immune capacity, improve nutrient apparent digestibility, promote the colonization of beneficial bacteria, inhibit the colonization of harmful bacteria. The addition effect of 0.2% bacterial enzyme compound preparation was the best. This study provides a scientific basis for the application of bacterial enzyme compound preparation in the production of Hu sheep.
|
Received: 16 July 2024
|
|
Corresponding Authors:
* maodagan@njau.edu.cn
|
|
|
|
[1] 毕梦凡. 2022. 菌酶复合添加剂的研制及其对湖羊生长性能和瘤胃微生物区系的影响[D]. 硕士学位论文, 河南农业大学, 导师: 常娟, pp. 36-38. (Bi M F.2022. Preparation of probiotics and enzyme compound additive and its effects on growth performance and rumen microbiota of Hu sheep[D]. Thesis for M.S., Henan Agricultural University, Supervisor: Chang J, pp. 36-38.) [2] 党文庆, 何敏, 上官明军, 等. 2024. 饲粮复合添加丁酸梭菌和葡萄糖氧化酶对生长肉兔生长性能、屠宰性能、免疫和抗氧化功能以及盲肠微生物区系的影响[J]. 动物营养学报, 36(1): 514-527. (Dang W Q, He M, Shangguan M J, et al.2024. Effects of compound supplementation of Clostridium butyricum and glucose oxidase on growth performance, slaughter performance, immune and antioxidant functions and cecal microflora of growing meat rabbits[J]. Chinese Journal of Animal Nutrition, 36(1): 514-527.) [3] 邸凌峰. 2018. 饲用纤维素酶与单宁对肉用湖羊生产性能的影响[D].硕士学位论文, 延边大学, 导师: 李成云, pp. 38-39. (Di L F.2018. Effect of feeding with cellulase and tannins on the performance of Hu sheep[D]. Thesis for M.S., Yanbian University, Supervisor: Li C Y, pp. 38-39.) [4] 丁赫, 刘旺景, 敖长金, 等. 2019. 饲粮中添加沙葱粉或复合益生菌制剂对杜寒杂交羊瘤胃发酵参数和瘤胃液菌群多样性的影响[J]. 动物营养学报, 31(1): 324-333. (Ding H, Liu W J, Ao C J, et al.2019. Effects of dietary allium mongolicum regel powder or probiotic complex preparation on ruminal fermentation parameters and rumen fluid bacterial diversity of Dorperx thin-tailed Han crossbred sheep[J]. Chinese Journal of Animal Nutrition, 31(1): 324-333.) [5] 杜瑞, 靳烨, 王柏辉, 等. 2020. 益生菌对苏尼特羊胃肠道菌群、代谢物及肉品质的影响[J]. 食品科学, 41(11): 14-21. (Du R, Jin Y, Wang B H, et al.2020. Dietary probiotics affect gastrointestinal microflora and metabolites and consequently improves meat quality in Sunit lambs[J]. Food Science, 41(11): 14-21.) [6] 冯婧, 姚大为, 李玉鹏, 等. 2024. 饲喂复合益生菌对湖羊粪便微生物多样性的影响研究[J]. 中国饲料, (7): 42-51. (Feng J, Yao D W, Li Y P, et al. 2024. Effects of feeding compound probiotics on fecal microbial diversity of Hu sheep[J]. China Feed, (7): 42-51) [7] 郭宝珠, 王申, 王晓芳, 等. 2021. 菌酶复合制剂对奶牛产奶性能及粪便结构的影响[J]. 草食家畜, (3): 11-17. (Guo B Z, Wang S, Wang X F, et al. 2021. Effect of bacterial-enzyme compound preparation on milk performance and fecal structure of dairy cows[J]. Grass-Feeding Livestock, (3): 11-17.) [8] 黄晓飞, 杨志强, 赵金鹏, 等. 2022. 活性酵母与复合酶组合产品对荷斯坦奶公犊生长性能和血清生化指标的影响[J]. 中国奶牛, (3): 1-5. (Huang X F, Yang Z Q, Zhao J P, et al. 2022. Effect of a new biological which contains active yeast and enzymes on growth performance and serumbiochemical indexes of Holstein male calves[J]. China Dairy Cattle, (3): 1-5.) [9] 李万军. 2023. 益生菌、酸化剂、酶制剂对大骨鸡生长性能、肉品质、血清生化及抗氧化能力的影响[J]. 饲料研究, 46(5): 36-41. (Li W J.2023. Effect of probiotics, acidifiers and enzymes on growth performance, meat quality, serum biochemical indexes and antioxidant capacity of Dagu chickens[J]. Feed Research, 46(5): 36-41.) [10] 刘伟, 于凤民, 马千鹏, 等. 2024. 木聚糖酶在青贮及反刍动物日粮中的应用[J]. 草地学报, 32(1): 331-339. (Liu W, Yu F M, Ma Q P, et al.2024. Application of xylanase in silage and ruminant diet[J]. Acta Agrestia Sinica, 32(1): 331-339.) [11] 石少英, 才让闹日. 2023. 复合益生菌饲料添加剂对肉羊生长性能、养分消化及免疫功能的影响[J]. 中国饲料, (4): 29-32. (Shi S Y, Cai R N R. 2023. Effects of compound probiotic feed additives on growth performance, nutrient digestion and immune function of mutton sheep[J]. China Feed, (4): 29-32.) [12] 田广杰. 2022. 酶菌联用制剂对波尔山羊育肥效果及胃肠道微生物的影响[D]. 硕士学位论文, 西北农林科技大学, 导师: 杨雨鑫, pp. 32-34. (Tian G J.2022. Effect of enzyme bacteria combination on fattening effect and gastrointestinal microorganism of Boer goats[D]. Thesis for M.S., Northwest A&F University, Supervisor: Yang Y X, pp. 32-34.) [13] 王红梅, 屠焰, 张乃锋, 等. 2017. 饲用酶制剂在反刍动物营养中的应用进展[J]. 草业学报, 26(3): 199-213. (Wang H M, Tu Y, Zhang N F, et al.2017. Application of exogenous enzymes in ruminant nutrition[J]. Acta Prataculturae Sinica, 26(3): 199-213.) [14] 王磊, 曹锡, 吴国芳, 等. 2021. 日粮添加复合饲用益生菌对肉牛生长性能及肠道微生物的影响[J]. 微生物学报, 61(7): 2031-2042. (Wang L, Cao X, Wu G F, et al.2021. Effects of probiotics supplementation in feed on cattle growth and gut microbiota[J]. Acta Microbiologica Sinica, 61(7): 2031-2042.) [15] 王志兰. 2018. 非饲草纤维来源和淀粉水平对育肥湖羊生产性能和瘤胃功能的影响[D]. 硕士学位论文, 兰州大学, 导师: 李发弟, pp. 26-28. (Wang Z L.2018. Effects of dietary non-forage fibre sources and starch levels on performances and rumen function of finishing Hu lamb[D]. Thesis for M.S., Lanzhou University, Supervisor: Li F D, pp. 26-28.) [16] 王智伟, 田林涛, 刘林丽, 等. 2024. 日粮添加不同种类和比例复合益生菌对湖羊瘤胃微生物群落的影响[J]. 农业生物技术学报, 32(3): 568-577. (Wang Z W, Tian L T, Liu L L, et al.2024. Effects of adding different types and proportions of complex probiotics to the diet on rumen microbe of Hu sheep (Ovis aries)[J]. Journal of Agricultural Biotechnology, 32(3): 568-577.) [17] 项驷文, 郑蕾, 朱龙宝, 等. 2017. 产朊假丝酵母富硒及产谷胱甘肽的培养工艺[J]. 食品工业科技, 38(01): 165-168;174. (Xiang S W, Zheng L, Zhu L B, et al.2017. Fermentation process of Candida utilis for selenium- enriched and production of glutathione[J]. Science and Technology of Food Industry, 38(01): 165-168;174.) [18] 阳治康, 殷运菊, 徐伟伟, 等. 2024. 纤维素酶的酶学特性及在畜禽生产中的应用研究进展[J]. 中国畜牧杂志, 60(5): 88-93. (Yang Z K, Yin Y J, Xu W W, et al.2024. Enzymatic properties of cellulase and its application in livestock and poultry production[J]. Chinese Journal of Animal Science, 60(5): 88-93.) [19] 尹鹏飞, 王继卿, 郝志云, 等. 2024. 开食料中添加纤维素酶对羔羊生长性能、瘤胃发酵和血清生化指标的影响[J]. 动物营养学报, 36(5): 3170-3182. (Yin P F, Wang J Q, Hao Z Y, et al.2024. Effects of adding cellulase to starter diets on growth performance, rumen fermentation and serum biochemical indices of lambs[J]. Chinese Journal of Animal Nutrition, 36(5): 3170-3182.) [20] 赵丹莉, 谢明杰. 2018. 高通量测序技术分析壳寡糖对小鼠肠道菌群的影响[J]. 营养学报, 40(5): 449-453. (Zhao D L, Xie M J.2018. Effect of chitosan oligosaccharide on intestinal flora in mice using Illumina-Miseq high-throughput sequencing platform[J]. Acta Nutrimenta Sinica, 40(5): 449-453.) [21] 庄苏, 丁立人, 周建国, 等. 2013. 添加外源纤维水解酶对羊草体外瘤胃发酵酶活性及特性的影响. 草业学报, 22(1): 315-322. (Zhuang S, Ding L R, Zhou J G, et al.2013. Effects of exogenous fibrolytic enzymes on the enzyme activities and fermentation characteristic of Chinese wildrye by mixed ruminal microorganisms in vitro[J]. Acta Prataculturae Sinica, 22(1): 315-322.) [22] Cao Z, Pan H, Tong H, et al.2015. In vitro evaluation of probiotic potential of Pediococcus pentosaceus L1 isolated from paocai—a Chinese fermented vegetable[J]. Annals of Microbiology, 66(3): 963-971. [23] Chaucheyras-Durand F, Walker N D, Bach A.2008. Effects of active dry yeasts on the rumen microbial ecosystem: Past, present and future[J]. Animal Feed Science and Technology, 145(1-4): 5-26. [24] Christodoulou C, Skourtis A, Kyriakaki P, et al.2023. The effect of dietary supplementation with probiotic and postbiotic yeast products on ewe's milk performance and immune oxidative status[J]. Journal of Fungi, 9(12): 1139. [25] Cruz B, Conceicao L L D, Mendes T A O, et al.2020. Use of the synbiotic VSL#3 and yacon-based concentrate attenuates intestinal damage and reduces the abundance of Candidatus Saccharimonas in a colitis-associated carcinogenesis model[J]. Food Research International, 137: 109721. [26] Dixit R B, Suseela M R.2013. Cyanobacteria: Potential candidates for drug discovery[J]. Antonie Van Leeuwenhoek, 103(5): 947-961. [27] Gado H M, Salem A Z M, Robinson P H, et al.2009. Influence of exogenous enzymes on nutrient digestibility, extent of ruminal fermentation as well as milk production and composition in dairy cows[J]. Animal Feed Science and Technology, 154(1-2): 36-46. [28] Ghorbani A, Moeini M M, Souri M, et al.2024. Effect of dietary zinc, selenium and their combination on antioxidant parameters in serum and Semen of Sanjabi mature rams[J]. Journal of Trace Elements and Minerals, 8: 100118 [29] Gloria-Trujillo A, Hernández-Sánchez D, Crosby-Galván M M, et al.2022. Performance and carcass characteristics of lambs fed diets supplemented with different levels of Saccharomyces cerevisiae[J]. Revista Brasileira de Zootecnia, 51: e20200281. [30] Gong L, Wang B, Mei X, et al.2018. Effects of three probiotic Bacillus on growth performance, digestive enzyme activities, antioxidative capacity, serum immunity, and biochemical parameters in broilers[J]. Animal Science Journal, 89(11): 1561-1571. [31] Homolka M N, Smith W N, Husz T C, et al.2023. Evaluating performance of beef cattle consuming a supplemental probiotic-prebiotic during the first 21 or 42 days after feedlot arrival[J]. Livestock Science, 270: 105096. [32] Hong J, Jlali M, Cozannet P, et al.2022. Growth performance, bone mineralization, nutrient digestibility, and fecal microbial composition of multi-enzyme-supplemented low-nutrient diets for growing-finishing pigs[J]. Journal of Animal Science, 100(5): skac096. [33] Jang S, Lee D, Jang I S, et al.2015. The culture of pediococcus pentosaceus T1 inhibits Listeria proliferation in salmon fillets and controls maturation of kimchi[J]. Food Technology Biotechnology, 53(1): 29-37. [34] Jiang S, Cai L, Lv L, et al.2021. Pediococcus pentosaceus, a future additive or probiotic candidate[J]. Microbial Cell Factories, 20(1): 45. [35] Kieliszek M, Kot A M, Bzducha-Wróbel A, et al.2017. Biotechnological use of Candida yeasts in the food industry: A review[J]. Fungal Biology Reviews, 31(4): 185-198. [36] Kjeldsen E W, Nordestgaard L T, Frikke-Schmidt R.2021. HDL cholesterol and non-cardiovascular disease: A narrative review[J]. International Journal of Molecular Sciences, 22(9): 4547. [37] Lim Y H, Foo H L, Loh T C, et al.2019. Comparative studies of versatile extracellular proteolytic activities of lactic acid bacteria and their potential for extracellular amino acid productions as feed supplements[J]. Journal of Animal Science and Biotechnology, 10(1): 15. [38] Ma Z Z, Cheng Y Y, Wang S Q, et al.2020. Positive effects of dietary supplementation of three probiotics on milk yield, milk composition and intestinal flora in Sannan dairy goats varied in kind of probiotics[J]. Journal of Animal Physiology and Animal Nutrition, 104(1): 44-55. [39] Mahmoud M M, Youssef I M I, Abd El-Tawab M M, et al.2020. Influence of probiotic and yeast culture supplementation on selected biochemical and immunological parameters of growing lambs[J]. Polish Journal of Veterinary Sciences, 23(1): 5-12. [40] Meale S J, Li S C, Azevedo P, et al.2017. Weaning age influences the severity of gastrointestinal microbiome shifts in dairy calves[J]. Scientific Reports, 7(1): 198. [41] Shoukry M M, El-Nomeary Y A A E-F, Salman F M, et al.2023. Improving the productive performance of growing lambs using prebiotic and probiotic as growth promoters[J]. Tropical Animal Health and Production, 55(6): 375. [42] Sudeb S, Kohtaro F, Marina D, et al.2023. Recent advances in the use of probiotics to improve meat quality of small ruminants: A review[J]. Microorganisms, 11(7): 1652. [43] van der Stel A X, Wosten M M S M.2019. Regulation of respiratory pathways in Campylobacterota: A review[J]. Front Microbiology, 10: 1719. [44] van Soest P J, Robe Rtson J B, Lewis B A.1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74(10): 3583-3597. [45] Xing C F, Hu H H, Huang J B, et al.2013. Diet supplementation of Pediococcus pentosaceus in cobia (Rachycentron canadum) enhances growth rate, respiratory burst and resistance against photobacteriosis[J]. Fish & Shellfish Immunology, 35(4): 1122-1128. [46] Zhu F, Zhang B, Li J, et al.2020. Effects of fermented feed on growth performance, immune response, and antioxidant capacity in laying hen chicks and the underlying molecular mechanism involving nuclear factor-κB[J]. Poultry Science, 99(5): 2573-2580. [47] Zapata O, Cervantes A, Barreras A, et al.2021. Effects of single or combined supplementation of probiotics and prebiotics on ruminal fermentation, ruminal bacteria and total tract digestion in lambs[J]. Small Ruminant Research, 204: 106538. [48] Zhang T, Li Q, Cheng L, et al.2019. Akkermansia muciniphila is a promising probiotic[J]. Microbial Biotechnology, 12(6): 1109-1125. |
|
|
|