|
|
Screening of Rhizosphere Growth-promoting Bacteria of Pepper (Capsicum annuum) and Analysis of Their Beneficial Effects |
ZHANG Lin, YU Hong-Feng, BI Yu, WANG Zhi-Gang, XU Wei-Hui*, LIU Gui-Lin |
College of Life Science and Agroforestry, Qiqihar University/Heilongjiang Provincial Technology Innovation Center of Agromicrobial Preparation Industrialization/Heilongjiang Provincial Collaborative Innovation Center of Agrobiological Preparation Industrialization, Qiqihar 161006, China |
|
|
Abstract Excessive application of chemical fertilizers and pesticides and soil continuous cropping have seriously restricted the production of pepper (Capsicum annuum), so it is very important to improve the soil environment so as to increase the yield of pepper. In order to screen rhizosphere growth-promoting bacteria of pepper and study their promoting effect, the rhizosphere soil from pepper in Qiqihar city was used as experimental materials. The growth-promoting bacteria in the rhizosphere of pepper was screened out using functional media, and identified by 16S rDNA sequence. The seed germination and pot experiments were conducted to verify the growth-promoting effect of the strains with strong growth-promoting ability. A total of 51 strains of pepper rhizosphere growth-promoting bacteria were isolated, which belonged to 12 genera. The results showed that among the 51 growth-promoting bacteria, 8 strains had the ability of phosphorus resolving, 35 strains could produce gibberellin, 33 strains could secrete auxin (IAA), and all 51 strains had the ability of phosphorus-solubilizing, potassium releasing and nitrogen fixation. Bacillus tequilensis K10 could significantly promote pepper seed germination and increased the number of root hairs of pepper young roots. B. siamensis G19-1 and Acinetobacter johnsonii N9-2 significantly increased above ground fresh weight, root fresh weight, aboveground dry weight, root dry weight and plant height (P<0.05), and the ability of bacteria to solubilize phosphorus, release potassium, fix nitrogen, produce gibberellins and IAA was significantly positively correlated with aboveground fresh weight, aboveground dry weight, and root dry weight of pepper plants (P<0.05). In conclusion, this experiment screened 3 growth-promoting bacteria K10, G19-1 and N9-2 as candidate strains for pepper microbial fertilizer, and will provide strain resources and technical support for the development of pepper microbial fertilizer.
|
Received: 16 August 2023
|
|
Corresponding Authors:
* xwh800206@163. com
|
|
|
|
[1] 常博文, 钟鹏, 刘杰, 等. 2019. 低温胁迫和赤霉素对花生种子萌发和幼苗生理响应的影响[J]. 作物学报, 45(01): 118-130. (Chang B W, Zhong P, Liu J, et al.2019. Effect of low-temperature stress and gibberellin on seed germination and seedling physiological responses in peanut[J]. Acta Agronomica Sinica, 45(01): 118-130.) [2] 陈定安, 魏小武, 张敏, 等. 2019. 油茶树根际土壤解有机磷细菌的分离、鉴定及解磷能力分析[J]. 湖南农业科学, (10): 8-11. (Chen A D, Wei X W, Zhang M, et al. 2019. Isolation, identification and phosphate solubilizing capacity of organophosphorus solubilizing bacteria in rhizosphere soil of Camellia oleifera[J]. Hunan Agricultural Sciences, (10): 8-11.) [3] 陈敏, 林品镕, 何宇清, 等. 2020. 苦草群落重建中吲哚乙酸(IAA)的使用效果及限制因素[J]. 生态科学, 39(04): 106-112. (Chen M, Lin P R, He Q Y, et al.2020. Effect and limitation of indoleacetic acid (IAA) in community reconstruction of Vallisneria natans[J]. Ecological Science, 39(04): 106-112.) [4] 陈晓斌, 张炳欣. 2000. 植物根围促生细菌(PGPR)作用机制的研究进展[J]. 微生物学杂志, 20(1): 38-41. (Chen X B, Zhang B X.2000. Research progress on the mechanism of plant rhizogrowth-promoting bacteria (PGPR)[J]. Journal of Microbiology, 20(1): 38-41.) [5] 冯晓英, 周桂雄, 吴庆珊, 等. 2020. 5株解钾菌解钾能力和抗旱效应的比较[J]. 河南农业科学, 49(06): 59-63. (Feng X Y, Zhou G X, Wu Q S, et al.2020. Comparison of potassium solubilization ability and drought resistance of five potassium-solubilizing bacteria[J]. Journal of Henan Agricultural Sciences, 49(06): 59-63.) [6] 勾宇春, 王宗抗, 张志鹏, 等. 2023. 植物根际促生菌作用机制研究进展[J]. 应用与环境生物学报, 29(02): 495-506. (Gou Y C, Wang Z H, Zhang Z P, et al.2023. Research progress on the mechanism of plant growth promoting rhizobacteria[J]. Chinese Journal of Applied and Environmental Biology, 29(02): 495-506.) [7] 黄臣, 韩玲娟, 梁银萍, 等. 2023. 达乌里胡枝子四株耐盐碱根际促生菌的鉴定及其促生作用[J]. 草地学报, 31(04): 1036-1047. (Huang C, Han L J, Liang Y P, et al.2023. Identification and plant growth promotion analysis of four salt-alkalitolerant rhizosphere-promoting bacteria lsolated from Lespedeza daurica[J]. Acta Agrestia Sinica, 31(04): 1036-1047.) [8] 黄挺, 党俊杰, 陈洪满, 等. 2023. 生物有机肥中解磷菌和固氮菌的筛选与鉴定[J]. 广西科技大学学报, 34(01): 92-97. (Huang T, Dang J J, Chen H M, et al.2023. Screening and identification of phosphate solubilizing bacteria and nitrogen-fixing bacteria in bioorganic fertilizers[J]. Journal of Guangxi University of Science and Technology, 34(01): 92-97.) [9] 李福艳, 刘晓玉, 颜静婷, 等. 2021. 三株产吲哚乙酸根际促生芽孢杆菌的筛选鉴定及其促生作用[J]. 浙江农业学报, 33(5): 873-884. (Li F Y, Liu X Y, Yan J T, et al.2021. Isolation and identification of three indole-3-acetic acid producing plant growth-promoting rhizosphere Bacillus sp. and their growth-promoting effects[J]. Acta Agriculturae Zhejiangensis, 33(5): 873-884.) [10] 李明源, 王继莲, 姚拓, 等. 2021. 祁连山高寒草地扁蓿豆和黄花棘豆耐冷PGPB的筛选及促生特性研究[J]. 农业生物技术学报, 29(11): 2074-2086. (Li M Y, Wang J L, Yao T, et al.2021. Screening and promoting effects of cold-adapted PGPB from Melissitus ruthenica and Oxytropis ochrocephala grown in the alpine grassland of Qilian Mountains[J]. Journal of Agricultural Biotechnology, 29(11): 2074-2086.) [11] 李小莉, 赵学强, 董晓英, 等. 2023. 酸性土壤中解磷菌的分离及其促生效果研究[J]. 中国土壤与肥料, (01): 224-230. (Li X L, Zhao X Q, Dong X Y, et al. 2023. Isolation of phosphate-solubilizing bacteria from acidic soil and its growth promoting effect[J]. Soil and Fertilizer Sciences in China, (01): 224-230.) [12] 廖建良, 刘东权, 贺握权. 2022. 不同植物生长调节剂对青蒿种子萌发及幼苗生长的影响[J]. 惠州学院学报, 42(03): 51-57. (Liao J L, Liu D Q, He W Q.2022. Effects of different plant growth regulators on seed germination and seedling growth of Artemisia annua[J]. Journal of Huizhou University, 42(03): 51-57.) [13] 刘选帅, 孙延亮, 安晓霞, 等. 2023. 施磷和接种解磷菌对紫花苜蓿光合特性及生物量的影响[J]. 草业学报, 32(03): 189-199. (Liu X S, Sun Y L, An X X, el al.2023. Effects of phosphorus application and inoculation with arbuscular mycorrhizal fungi and phosphorus-solubilizing bacteria on the photosynthetic characteristics[J]. Acta Prataculturae Sinica, 32(03): 189-199.) [14] 刘悦, 徐伟慧, 王志刚. 2023. 大豆根际促生菌的筛选鉴定与促生效应[J]. 浙江农业学报, 1-11. (Liu Y, Xu W H, Wang Z G.2023. Screening and identification of soybean rhizosphere growth-promoting bacteria and their growth-promoting effects[J]. Acta Agriculturae Zhejiangensis, 1-11.) [15] 路垚, 刘雅辉, 孙建平, 等. 2022. 耐低温降解纤维素菌株的筛选及复合菌系构建[J]. 安徽农业科学, 50(10): 6-10; 27. (Lu Y, Liu Y H, Sun J P, et al.2022. Screening of low temperature cellulose degradation strains and construction of complex microbial system[J]. Journal of Anhui Agricultural Sciences, 50(10): 6-10; 27.) [16] 王宏燕, 韩凯鑫, 冯丽荣, 等. 2023. 耐盐解磷菌筛选鉴定及生理特性研究[J]. 东北农业大学学报, 54(05): 28-37. (Wang H Y, Han K X, Feng L R, et al.2023. Screening and identification of salt-resistant phosphorus bacteria and its physiological characteristics[J]. Journal of Northeast Agricultural University, 54(05): 28-37.) [17] 王凯. 2023. 生物肥料概述及其在果园中的应用研究[J]. 果农之友, (7): 65-69. (Wang K. 2023. Overview of biofertilizers and their application in orchards[J]. Fruit Growers' Friend, (7): 65-69.) [18] 王珣珏, 黄巧云, 蔡鹏, 等. 2016. 解钾菌解钾效率检测方法的比较[J]. 华中农业大学学报, 35(01): 81-85. (Wang X Y, Huang Q Y, Cai P, et al.2016. Comparing different methods of detecting potassium solubilizing efficiency with potassium solubilizing bacteria[J]. Journal of Huazhong Agricultural University, 35(01): 81-85.) [19] 吴玥, 王秋颖, 关体坤, 等. 2022. 磷铁尾矿中高效解磷菌筛选、鉴定及解磷特性[J]. 北京农学院学报, 37(04): 6-12. (Wu Y, Wang Q Y, Guan T K, et al.2022. Isolation, identification and phosphate solubilizing characteristics of a phosphate solubilizing bacterium from ferrophosphate tailings[J]. Journal of Beijing University of Agriculture, 37(04): 6-12.) [20] 伍巧慧, 龚文坤, 刘新月, 等. 2023. 哈密瓜根际耐高温促生菌的筛选及其促生效应研究[J]. 中国土壤与肥料, (08): 1-10. (Wu Q H, Gong W K, Liu X Y, et al. 2023. Screening of high temperature resistant growth promoting bacteria in the rhizosphere of cantaloupe and its promotion effect[J]. Soil and Fertilizer Sciences in China, (08): 1-10.) [21] 夏秀娟. 2013. 辣椒的营养功效及早春多层覆盖栽培技术[J]. 吉林蔬菜, (10): 10-11. (Xia X J. 2013. Nutritional efficacy of capsicum and multi-layer mulch cultivation technique in early spring[J]. Jilin Vegetables, (10): 10-11.) [22] 向亮, 陈佳勃, 王艳杰, 等. 2021. 植物激素处理对翅碱蓬种子萌发的影响[J]. 人民珠江, 42(06): 40-46. (Xiang L, Chen J B, Wang Y J, et al.2021. Effects of germination of Suaeda salsa seeds after treating with plant hormones[J]. Pearl River, 42(06): 40-46.) [23] 杨晓燕, 叶伟伟, 魏善强, 等. 2022. 一株巨大芽孢杆菌发酵培养基的优化及解磷效果研究[J]. 中国农学通报, 38(15): 105-112. (Yang X Y, Ye W W, Wei S Q, et al.2022. Bacillus megaterium: Fermentation medium optimization and phosphate solubilization effect[J]. Chinese Agricultural Science Bulletin, 38(15): 105-112.) [24] 元文霞, 毕影东, 樊超, 等. 2022. 我国生物肥-料的发展现状与应用[J]. 农业科技通讯, (12): 4-9. (Yuan W X, Bi Y D, Fan C, et al. 2022. Development status and application of biofertilizers in China[J]. Bulletin of Agricultural Science and Technology, (12): 4-9.) [25] 张垚, 张芝, 王志刚, 等. 2022. 辣椒根际促生菌筛选鉴定及其促生效应初探[J]. 浙江农业科学, 63(05): 958-963. (Zhang Y, Zhang Z, Wang Z G, et al.2022. Screening, identification of growth-promoting rhizobacteria in pepper and preliminary study on its promoting effect[J]. Journal of Zhejiang Agricultural Sciences, 63(05): 958-963.) [26] 周霞, 陈家秀, 罗兰, 等. 2023. 不同生物肥料施用对辣椒产量及经济效益的影响[J]. 长江蔬菜, (14): 75-77. (Zhou X, Chen J X, Luo L, et al. 2023. Effects of different bio-fertilizers on yield and economic benefit of pepper[J]. Journal of Changjiang Vegetables, (14): 75-77.) [27] 朱滕滕, 何学莲, 勉小娟, 等. 2023. 硒砂瓜根际促生菌筛选鉴定及其促生效应研究[J]. 干旱地区农业研究, 41(02): 221-229. (Zhu T T, He X L, Mian X J, et al.2023. Growth-promoting bacteria screening from selenium watermelon rhizosphere and their growth promoting effects[J]. Agricultural Research in the Arid Areas, 41(02): 221-229.) [28] Brader G, Compant S, Vescio K, et al.2017. Ecology and genomic insights into plant-pathogenic and plant-nonpathogenic endophytes[J]. Annual Review of Phytopathology, 55: 61-83. [29] Glick B R.2012. Plant growth-promoting bacteria: Mechanisms and applications[J]. Scientifica, (5): 963401. [30] Gouda S, Kerry R G, Das G, et al.2018. Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture[J]. Microbiological Research, 206: 131-140. [31] Mayadunna N, Karunarathna S C, Asad S, et al.2023. Isolation of phosphate-solubilizing microorganisms and the formulation of biofertilizer for sustainable processing of phosphate rock[J]. Life, 13(3): 782-800. [32] Mohan S, Kumar K K, Sutar V, et al.2020. Plant root-exudates recruit hyperparasitic bacteria of phytonematodes by altered cuticle aging: Implications for biological control strategies[J]. Frontiers in Plant Science, 11: 763. [33] Rajawat M, Singh S, Tyagi S P, et al.2016. A modified plate assay for rapid screening of potassium-solubilizing bacteria[J]. Pedosphere, 26(5): 768-773. [34] Raza A, Ejaz S, Saleem M S, et al.2021. Plant growth promoting rhizobacteria improve growth and yield related attributes of chili under low nitrogen availability[J]. PLOS ONE, 16(12): 1-12. [35] Shi Y H, Pan Y S, Xiang L, et al.2022. Assembly of rhizosphere microbial communities in Artemisia annua: Recruitment of plant growth-promoting microorganisms and inter-kingdom interactions between bacteria and fungi[J]. Plant and Soil, 470: 127-139. [36] Tariq M, Noman M, Ahmed T, et al.2017. Antagonistic features displayed by plant growth promoting rhizobacteria (PGPR): A review[J]. Heighten Science Publications Corporation, 1: 038-043. [37] Wang C, Li Y, Li M, et al.2021. Functional assembly of root-associated microbial consortia improves nutrient efficiency and yield in soybean[J]. Journal of Integrative Plant Biology, 63(6): 1021-1035. [38] Zhao Y N, Zhang M S, Yang W, et al.2019. Effects of microbial inoculants on phosphorus and potassium availability, bacterial community composition, and chili pepper growth in a calcareous soil: A greenhouse study[J]. Journal of Soils and Sediments, 19(10): 3597-3607. |
[1] |
ZHANG Jing, WANG Jian-Feng, GONG Ji-Yi, WANG Li, CHEN Xian-Lei, CHEN Lan-Lan, LI Na, LIU Jie, YI Yin. Molecular and Microbial Mechanisms of Plant Response to Copper Stress[J]. 农业生物技术学报, 2024, 32(9): 2159-2172. |
|
|
|
|