|
|
Regulation Effect of UePep1 in the Pathogenicity of Ustilago esculenta |
HUANG Lin-Yu, TANG Jin-Tian, XIA Wen-Qiang, CUI Hai-Feng, YE Zi-Hong, ZHANG Ya-Fen* |
Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine/College of Life Sciences, China Jiliang University, Hangzhou 310018, China |
|
|
Abstract Ustilago esculenta can induce the formation of the enlarged fleshy stem of Zizania latifolia after obligate infection, and its pathogenicity is closely related to the phenotype and yield of the swollen stem called Jiaobai. Pep1 (protein essential during penetration 1), as a fungal effector, plays an important role in the pathogenicity of Ustilago fungi. In this study, UePep1 (GenBank No. OR088111), the homologous protein coding gene of Pep1 in U. esculenta, was cloned by BLASTP mapping and sequence analysis, with an ORF of 528 bp, encoding 175 amino acids and no intronic sequences. The deletion of UePep1 gene did not affect the haploid morphology, growth rate, mycelial formation and filamentous growth of U. esculenta in vitro. However, it significantly inhibited the invaded mycelial proliferation of the U. esculenta in vivo, and could not induce the formation of the enlarged fleshy stem. Further supplementation of UePep1 into the SG200ΔPep1 strain of Ustilago maydis partially restored the infectivity of the SG200ΔPep1 strain, indicating that UePep1 is a functional complementary protein of the Pep1 in the smut fungi. The results provide a reference and theoretical support for further understanding of the interaction mechanism between U. esculenta and Z. latifolia and the formation mechanism of enlarged fleshy stem.
|
Received: 08 June 2023
|
|
Corresponding Authors:
* zyfzjhzyh@163.com
|
|
|
|
[1] 曹乾超. 2017. 菰黑粉菌MAPK基因UeKpp2和UeKpp6的功能研究[D]. 硕士学位论文, 中国计量大学, 导师: 张雅芬, pp. 23-24. (Cao Q C.2017. Functional study of MAP kinase genes UeKpp2 and UeKpp6 in Ustilago esculenta[D]. Thesis for M.S., China Jiliang University, Supervisor: Zhang Y F, pp. 23-24.) [2] 江解增, 张强, 曹碚生等. 2004. 茭白肉质茎膨大过程中保护酶活性变化初探[J]. 扬州大学学报: 农业与生命科技版, 25(2): 68-71. (Jiang J Z, Zhang Q, CAO P S, et al.2004. Preliminary Study on Protective enzyme activity during fleshy stem enlargement of Zizania latifolia[J]. Journal of Yangzhou University: Agriculture and Life Science Edition, 25(2): 68-71.) [3] 刘洪磊, 于金梦, 曹乾超, 等. 2019. UeFuz7在菰黑粉菌二型态转换中的作用[J]. 植物病理学报, 49(02):203-211. (Liu H L, Yu J M, Cao Q C, et al.2019,. The function on dimorphic transition of UeFuz7 in Ustilago esculenta[J]. Acta Phytopathologica Sinica, 49(02): 203-211.) [4] 刘伟, 黄建中, 郭得平等. 2011. 茭白肉质茎膨大期间的氧化胁迫[J]. 核农学报, 25(4): 824-827. (Liu W, Huang J Z, Guo D P, et al.2011. Oxidative stress during fleshy stem enlargement of Zizania latifolial[J]. Journal of Nuclear Agriculture, 25(4): 824-827.) [5] 余佳佳, 张雅芬, 崔海峰, 等. 2015. 菰黑粉菌中Ueubc2的克隆及表达分析[J]. 长江蔬菜, (22): 202-207. (Yu J J, Zhang Y F, Cui H F, et al. 2015. Cloning and Expression Analysis of Ueubc2 in Ustilago esculenta[J]. Journal of Changjiang Vegetables, (22): 202-207.) [6] Couturier M, Navarro D, Olivé C, et al.2012. Post-genomic analyses of fungal lignocellulosic biomass degradation reveal the unexpected potential of the plant pathogen Ustilago maydis[J]. BMC Genomics, 13: 57. [7] Doehlemann G, Van Der Linde K, Assmann D, et al.2009. Pep1, a secreted effector protein of Ustilago maydis, is required for successful invasion of plant cells[J]. PLoS Pathogens, 5(2): e1000290. [8] Guo H B, Li S M, Peng J, et al.2007. Zizania latifolia turcz. cultivated in China[J]. Genetic Resources & Crop Evolution, 54: 1211-1217. [9] Hemetsberger C, Herrberger C, Zechmann B, et al.2012. The Ustilago maydis effector Pep1 suppresses plant immunity by inhibition of host peroxidase activity[J]. PLoS Pathogens, 8(5): e1002684. [10] Hemetsberger C, Mueller A N, Matei A, et al.2015. The fungal core effector Pep1 is conserved across smuts of dicots and monocots[J]. The New Phytologist, 206(3), 1116-1126. [11] Jones J D, Dangl J L.2006. The plant immune system[J]. Nature, 444: 323-329. [12] Nadal M, García P M D, Gold S E.2010. Dimorphism in fungal plant pathogens[J]. FEMS Microbiology Letters, 284(2): 127-134. [13] Porebski S, Bailey L G, Baum B R.1997. Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components[J]. Plant Molecular Biology Reporter, 15(1): 8-15. [14] Schirawski J, Mannhaupt G, Munch K, et al.2010. Pathogenicity determinants in smut fungi revealed by genome comparison[J]. Science, 330: 1546-1548. [15] Sharma R, Mishra B, Runge F, Thines M.2014. Gene loss rather than gene gain is associated with a host jump from monocots to dicots in the smut fungus Melanopsichium pennsylvanicum[J]. Genome Biology and Evolution, 6: 2034-2049. [16] Teertstra WR, Deelstra HJ, Vranes M, et al.2006. Repellents have functionally replaced hydrophobins in mediating attachment to a hydrophobic surface and in formation of hydrophobic aerial hyphae in Ustilago maydis[J]. Microbiology (Reading), 152(Pt 12): 3607-3612. [17] Wang S, Gao L, Yin Y, et al.2022. Transcriptome comparison between two strains of Ustilago esculenta during the mating[J]. Journal of fungi (Basel, Switzerland), 9(1): 32. [18] Wang S, Xia W, Li Y,et al.2023. The novel effector Ue943 is essential for host plant colonization by Ustilago esculenta[J]. Journal of Fungi (Basel), 9(5): 593. [19] Wang Z H, Yan N, Luo X, et al.2020. Gene expression in the smut fungus Ustilago esculenta governs swollen gall metamorphosis in Zizania latifolia[J]. Microbial Pathogenesis, 143: 104107. [20] Wang Z H, Yan N, Luo X, et al.2021. Role of Long Noncoding RNAs ZlMSTRG.11348 and UeMSTRG.02678 in Temperature-Dependent Culm Swelling in Zizania latifolia[J]. International journal of molecular sciences, 22(11): 6020. [21] Xia W, Yu X, Ye Z.2020. Smut fungal strategies for the successful infection[J]. Microbial Pathogenesis, 142:104039. [22] Ye Z H, Pan Y, Zhang Y F, et a1.2017. Comparative whole-genome analysis reveals artificial selection effects on Ustilago esculenta genome[J]. DNA Research, 24(6): 635-648. [23] Zhang J Z, Chu F Q, Guo D P, et al.2014. The vacuoles containing multivesicular bodies: A new observation in interaction between Ustilago esculenta and Zizania Latifolia[J]. European Journal of Plant Pathology, 138(1): 79-91. [24] Zhang J Z, Guo D P, Xie G L, et al.2012.Cytology and ultrastructure of interactions between Ustilago esculenta and Zizania latifolia[J]. Mycological Progress, 11(2): 499-508. [25] Zhang Y, Cao Q, Hu P, et al.2017. Investigation on the differentiation of two Ustilago esculenta strains-implications of a relationship with the host phenotypes appearing in the fields[J]. BMC Microbiology, 17:228. [26] Zhang Y, Ge Q, Cao Q, et al.2018. Cloning and characterization of two MAPK genes UeKpp2 and UeKpp6 in Ustilago esculenta[J]. Current Microbiology, 75(8): 1016-1024. [27] Zhang Y, Hu Y, Cao Q, et al.2020. Functional properties of the MAP kinase UeKpp2 in Ustilago esculenta[J]. Front Microbiol, 11: 1053. [28] Zhang Y, Liu H, Cao Q, et al.2018. Cloning and characterization of the UePrf1 gene in Ustilago esculenta[J]. FEMS Microbiology Letters, 365(12): 60-70. [29] Zhang Y F, Yin Y M, Hu P, et al.2019. Mating-type loci of Ustilago esculenta are essential for mating and development[J]. Fungal Genetics and Biology, 125: 60-70. |
[1] |
TANG Jin-Tian, YANG Fu-Rong, ZHANG Lei-Lei, LI Yu-Kang, ZHANG Ya-Fen, FU Hui-Lan, XIA Wen-Qiang, CUI Hai-Feng, YE Zi-Hong. Construction of Fluorescently Labeled Strains of Nucleus and Mitochondria for Ustilago esculenta[J]. 农业生物技术学报, 2024, 32(5): 1188-1197. |
|
|
|
|