|
|
Cloning and Expression Analysis of HpTCP9 Gene in Pitaya (Hylocereus polyrhizus) Under Drought Stress |
NI Rui1,2, LUO You-You1,2, HUANG Miao1,2, CAI Jun-Yi1,2, HE Yi-Han1,2, LIU Wen-Lin1,2, YAO Yi-Ni1,2, ZHAO Jin1,2,* |
1 College of Agriculture, Guizhou University, Guiyang 550025, China; 2 Institute of Pepper Industry and Technology, Guizhou University, Guiyang 550025, China |
|
|
Abstract TCP (teosinte branched1/cycloidea/proliferating cell factor) is a plant specific transcription factor that is widely involved in plant growth and development and response to environmental stress. TCP9 is a class Ⅰ member of TCP gene family and plays an important role in respose to plant drought stress. Pitaya (Hylocereus sp.) is an ideal material for drought resistance research because of the strong drought resistance. Hylocereus polyrhizus variety 'Da Hong' were used to isolated the HpTCP9 gene by RT-PCR technology in order to investigate the biological function of the TCP9 gene in the drought resistance of pitaya. Bioinformatics analysis showed that the ORF length of the HpTCP9 gene was 729 bp, encoding 242 amino acids, with a molecular weight of 24.86 kD, an isoelectric point of 5.04, and a hydrophilicity index of 1.021. Domain analysis showed that the HpTCP9 protein sequence had a typical TCP conserved domain. The protein structure prediction results indicated that α spiral was 12.40%, irregular curls were 66.12%, and extended chains were 12.81%, The β-turn was 8.68%. To detect the subcellular localization of HpTCP9, a pCAMBIA2300-HpTCP9-GFP expression vector carrying a GFP tag was constructed. HpTCP9 was detected as a nuclear localization protein through Arabidopsis protoplast transformation. Real time fluorescence quantitative PCR analysis showed that the HpTCP9 gene was significantly upregulated by 20% PEG6000 simulated drought treatment, and the expression level was positively correlated with the treatment duration. The above results indicated that the HpTCP9 belonged to the ClassⅠsubfamily of the TCP family, had a TCP conserved domain, was a hydrophobic protein located in the nucleus, and played a role in the drought stress defense mechanism of H. polyrhizus. This study provides a theoretical basis for further exploring the function of the HpTCP9 gene in H. polyrhizus.
|
Received: 02 August 2023
|
|
Corresponding Authors:
* zhaojin7094@163.com
|
|
|
|
[1] 安琳君, 栾嘉豫, 任丽, 等. 2019. 白桦BpTCP8基因生物信息学及表达特性分析[J]. 南京林业大学学报: 自然科学版, 43(05): 67-73. (An L J, Luan J Y, Ren L, et al.2019. Bioinformatics and expression characteristics analysis of BpTCP8 gene in Betula platyphylla[J]. Journal of Nanjing Forestry University: Natural Science Edition, 43(05): 67-73.) [2] 邓仁菊, 范建新, 蔡永强. 2011. 国内外火龙果研究进展及产业发展现状[J]. 贵州农业科学, 39(06): 188-192. (Deng R J, Fan J X, Cai Y Q.2011. Research progress and industrial development of pitaya at home and abroad[J]. Guizhou Agricultural Sciences, 39(06): 188-192.) [3] 葛菲, 聂琼, 乔光, 等. 2016. 转火龙果过氧化氢酶基因烟草植株的获得及其抗旱性分析[J]. 西南大学学报:自然科学版, 38(11): 57-63. (Ge F, Nie Q, Qiao G, et al.2016. Obtaining and drought resistance analysis of transgenic tobacco plants with pitaya catalase gene[J]. Journal of Southwest University: Natural Science Edition, 38(11): 57-63.) [4] 韩建霞, 曹喜兵, 刘海芳, 等. 2022. 白花泡桐TCP家族分析及其对丛枝病和干旱的响应[J]. 森林与环境学报, 42(04): 337-345. (Han J X, Cao X B, Liu H F, rt al.2022. Analysis of the Paulownia fortunei TCP family and its response to broom disease and drought[J]. Journal of Forests and Environment, 42(04): 337-345.) [5] 雷其冬. 2021. 拟南芥miR319-TCP4调控植物应答干旱胁迫的分子机制研究[D]. 硕士学位论文, 昆明理工大学, 导师: 徐慧妮. pp. 29-53. (Lei Q D, 2021. Molecular mechanism of Arabidopsis miR319-TCP4 regulating plant response to drought stress[D]. Thesis for M.S., Kunming University of Science and Technology, Supervisor: Xu H N, pp. 29-53.) [6] 梁楠松. 2021. 水曲柳FmTCP2和FmTCP15参与叶发育与干旱耐受性的功能分析[D]. 博士学位论文, 东北林业大学, 导师: 詹亚光, pp. 99-106. (Liang N S.2021. Functional analysis of FmTCP2 and FmTCP15 involved in leaf development and drought tolerance of Fraxinus mandshurica[D]. Thesis for Ph.D., Northeast Forestry University, Supervisor: Zan Y G. pp. 99-106.) [7] 刘春浩, 梁楠松,于磊, 等. 2017. 水曲柳TCP4转录因子克隆及胁迫和激素下的表达分析[J]. 北京林业大学学报, 39(06): 22-31. (Liu C H, Liang N S, Yu L, et al.2017. Cloning and expression analysis of TCP4 transcription factor from Fraxinus mandshurica under stress and hormones[J]. Journal of Beijing Forestry University, 39(06): 22-31.) [8] 罗霞, 文晓鹏. 2015. 火龙果UQT和18s rRNA内参基因片段的克隆及表达分析[J]. 山地农业生物学报, 34(02): 23-26. (Luo X, Wen X P.2015. Cloning and expression analysis of UQT and 18s rRNA reference gene fragments from pitaya[J]. Journal of Mountain Agriculture and Biology, 34(02): 23-26.) [9] 齐钊, 闫臻, 徐敏, 等. 2018. 干旱胁迫对火龙果植株形态及生理指标的影响[J]. 广东农业科学, 45(03): 26-32, 173. (Qi Z, Yan Z, Xu M, et al.2018. Effects of drought stress on morphological and physiological indexes of pitaya plants[J]. Guangdong agricultural science, 45(03): 26-32, 173.) [10] 屈志广, 杜巧丽, 方远鹏, 等. 2021. 高粱TCP转录因子基因SbTCP14的克隆和表达分析[J]. 植物生理学报, 57(07): 1573-1581. (Qu G Z, Du Q L, Fang Y P, et al.2021. Cloning and expression analysis of TCP transcription factor SbTCP14 in Sorghum bicolor[J]. Journal of Plant physiology, 57(07): 1573-1581.) [11] 唐羽翔, 高旭, 崔亚宁, 等. 2022. 植物TCP转录因子研究进展[J]. 科学通报, 67(33): 3964-3975. (Tang Y X, Gao X, Cui Y N, et al.2022. Research progress in plant TCP transcription factors[J]. Science Bulletin, 67(33): 3964-3975.) [12] 文晓鹏, 郑思成, 樊庆杰, 等. 2013. 火龙果试管苗对干旱胁迫的生理生化反应[J]. 西南大学学报:自然科学版, 35(04): 8-13. (Wen X P, Zheng S C, Fan Q J, et al.2013. Physiological and biochemical responses of pitaya test tube seedlings to drought stress[J]. Journal of Southwest University: Natural Science Edition, 35(04): 8-13.) [13] 颜凤霞, 文晓鹏, 乔光, 等. 2014. 火龙果类锌指蛋白基因片段的克隆及表达分析[J]. 西南大学学报:自然科学版, 36(10): 37-41. (Yan F X, Wen X P, Qiao G, et al.2014. Cloning and expression analysis of zinc finger like protein gene fragment from pitaya[J]. Journal of Southwest University: Natural Science Edition, 36(10): 37-41.) [14] 姚莹, 王伟, 孙永媛, 等. 2021. 沙棘HrTCP转录因子家族鉴定及其干旱胁迫下的表达分析[J]. 西北植物学报, 41(04): 576-584. (Yao Y, Wang W, Sun Y Y, et al.2021. Identification of the HrTCP transcription factor family in Hippophae rhamnoides and its expression analysis under drought stress[J]. Acta Botanica Boreali-Occidentalia Sinica, 41(04): 576-584.) [15] 张龙, 徐世强, 李静宇, 等. 2024. 穿心莲TCP基因家族全基因组鉴定及非生物胁迫下的表达分析[J/OL]. 中国中药杂志, 49(02): 379-388. (Zhang L, Xu S Q, Li J Y, et al.2023. Genome-wide identification of the TCP gene family of Andrographis paniculata and its expression under abiotic stress[J]. Chinese journal of traditional Chinese Medicine, 49(02): 379-388.) [16] 张欣. 2020. PdbTCP9基因调控山新杨干旱应答和次生壁合成的功能研究[D]. 博士学位论文, 东北林业大学, 导师: 杨传平, 王玉成. pp. 75-78. (Zhang X.2020. Functional study on PdbTCP9 gene regulating drought response and secondary wall synthesis in Populus davidiana[D]. Thesis for Ph.D., Northeast Forestry University, Supervisor: Yang C P, Wang Y C, pp. 75-78.) [17] 张志强, 卢世雄, 马宗桓, 等. 2020. 草莓TCP转录因子家族生物信息学鉴定及基因表达分析[J]. 西北植物学报, 40(12): 2031-2043. (Zhang Z Q, Lu S X, Ma Z H, et al.2020. Bioinformatics identification and gene expression analysis of strawberry TCP transcription factor family[J]. Acta Botanica Boreali-Occidentalia Sinica, 40(12): 2031-2043.) [18] Aggarwal P, Das Gupta M, Joseph A P, et al.2010. Identification of specific DNA binding residues in the TCP family of transcription factors in Arabidopsis[J]. Plant Cell, 22(4): 1174-89. [19] Chen J Y, Xie F F, Cui Y Z, et al.2021. A chromosomescale genome sequence of pitaya (Hylocereus undatus) provides novel insights into the genome evolution and regulation of betalain biosynthesis[J]. Horticulture Research, 8(1): 164. [20] Ding S, Cai Z, Du H, Wang H.2019. Genome-wide analysis of TCP family genes in Zea mays L. identified a role for ZmTCP42 in drought tolerance[J]. International Journal of Molecular Sciences, 20(11): 2762. [21] Horn S, Pabón-Mora N, Theuß V S, et al.2015. Analysis of the CYC/TB1 class of TCP transcription factors in basal angiosperms and magnoliids[J]. Plant Journal, 81(4): 559-571. [22] Martín-Trillo M, Cubas P.2010. TCP genes: A family snapshot ten years later[J]. Trends in Plant Science, 15(1): 31-39. [23] Mishra S, Sahu G, Shaw B P.2022. Insight into the cellular and physiological regulatory modulations of Class-I TCP9 to enhance drought and salinity stress tolerance in cowpea[J]. Physiology Plant, 174(1): e13542. [24] Mukhopadhyay P, Tyagi A K.2015. OsTCP19 influences developmental and abiotic stress signaling by modulating ABI4-mediated pathways[J]. Scientific Reports, 5: 9998. [25] Xu Y, Liu H, Gao Y, et al.2021. The TCP transcription factor PeTCP10 modulates salt tolerance in transgenic Arabidopsis[J]. Plant Cell Reports, 40(10): 1971-1987. |
|
|
|