|
|
Molecular Composition and Mechanism of Action of PANoptosis |
WANG Yi-Ru, WANG Yuan, CAO Ling-Xia, YANG Jie, WANG Shu-Min* |
State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China |
|
|
Abstract Programmed cell death (PCD) is a line of the innate immune defense system, and plays an important role in the growth development and immune regulation of the organism. As a new PCD pathway, PANoptosis is regulated by the multi-protein complex PANoptosome, which can simultaneously regulate the three key modes of programmed cell death including pyroptosis, apoptosis and necrosis, thereby defending against invasion of various pathogens. Consequently, studying the mechanism of PANoptosis is of great significance for deepening the understanding of cell death patterns, suggesting the occurrence of inflammation and diseases. In this paper, the concept, mechanism of action, molecular composition and assembly method of PANoptosis were reviewed, then a view was proposed that the formation of PANoptosome was a sign of PANoptosis in cells. This review provides new ideas for the treatment of inflammatory diseases.
|
Received: 19 June 2023
|
|
Corresponding Authors:
*wangshumin@cau.edu.cn
|
|
|
|
[1] Banoth B, Tuladhar S, Karki R, et al.2020. Zbp1 promotes fungi-induced inflammasome activation and pyroptosis, apoptosis, and necroptosis (PANoptosis)[J]. Journal of Biological Chemistry, 295(52): 18276-18283. [2] Boege Y, Malehmir M, Healy M E, et al.2017. A dual role of caspase-8 in triggering and sensing proliferation-associated DNA damage, a key determinant of liver cancer development[J]. Cancer Cell, 32(3): 342-359. [3] Boldin M P, Varfolomeev E E, Pancer Z, et al.1995. A novel protein that interacts with the death domain of Fas/Apo1 contains a sequence motif related to the death domain[J]. Journal of Biological Chemistry, 270(14): 7795-7798. [4] Cai Z, Jitkaew S, Zhao J, et al.2014. Plasma membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis[J]. Nature Cell Biology, 16(1): 55-65. [5] Christgen S, Zheng M, Kesavardhana S, et al.2020. Identification of the PANoptosome: A molecular platform triggering pyroptosis, apoptosis, and necroptosis (PANoptosis)[J]. Frontiers in Cellular and Infection Microbiology, 10: 237. [6] da Costa L S, Outlioua A, Anginot A, et al.2019. RNA viruses promote activation of the NLRP3 inflammasome through cytopathogenic effect-induced potassium efflux[J]. Cell Death and Disease, 10(5): 346. [7] Dhuriya Y K, Sharma D.2018. Necroptosis: A regulated inflammatory mode of cell death[J]. Journal of Neuroinflammation, 15(1): 199. [8] Elmore S.2007. Apoptosis: A review of programmed cell death[J]. Toxicologic Pathology, 35(4): 495-516. [9] Fritsch M, Gunther S D, Schwarzer R, et al.2019. Caspase-8 is the molecular switch for apoptosis, necroptosis and pyroptosis[J]. Nature, 575(7784): 683-687. [10] Galluzzi L, Vitale I, Aaronson S A, et al.2018. Molecular mechanisms of cell death: Recommendations of the nomenclature committee on cell death 2018[J]. Cell Death and Differentiation, 25(3): 486-541. [11] Gong J, Li Z Z, Guo S, et al.2015. Neuron-specific tumor necrosis factor receptor-associated factor 3 is a central regulator of neuronal death in acute ischemic stroke[J]. Hypertension, 66(3): 604-616. [12] Gurung P, Anand P K, Malireddi R K, et al.2014. Fadd and caspase-8 mediate priming and activation of the canonical and noncanonical NLRP3 inflammasomes[J]. Journal of Immunology, 192(4): 1835-1846. [13] Jan R, Chaudhry G E.2019. Understanding apoptosis and apoptotic pathways targeted cancer therapeutics[J]. Advanced Pharmaceutical Bulletin, 9(2): 205-218. [14] Jiang M, Qi L, Li L, et al.2021. Caspase-8: A key protein of cross-talk signal way in "Panoptosis" in cancer[J]. International Journal of Cancer, 149(7): 1408-1420. [15] Jorgensen I, Rayamajhi M, Miao E A.2017. Programmed cell death as a defence against infection[J]. Nature Reviews Immunology, 17(3): 151-164. [16] Karki R, Man S M, Malireddi R, et al.2015. Concerted activation of the AIM2 and NLRP3 inflammasomes orchestrates host protection against aspergillus infection[J]. Cell Host and Microbe, 17(3): 357-368. [17] Karki R, Sharma B R, Lee E, et al.2020. Interferon regulatory factor 1 regulates PANoptosis to prevent colorectal cancer[J]. JCI Insight, 5(12): e136720. [18] Karki R, Sharma B R, Tuladhar S, et al.2021. Synergism of tnf-alpha and ifn-gamma triggers inflammatory cell death, tissue damage, and mortality in SARS-Cov-2 infection and cytokine shock syndromes[J]. Cell, 184(1): 149-168. [19] Kayagaki N, Stowe I B, Lee B L, et al.2015. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling[J]. Nature, 526(7575): 666-671. [20] Kesavardhana S, Kuriakose T, Guy C S, et al.2017. ZBP1/DAI ubiquitination and sensing of influenza vRNPs activate programmed cell death[J]. Journal of Experimental Medicine, 214(8): 2217-2229. [21] Kesavardhana S, Malireddi R, Burton A R, et al.2020. The zalpha2 domain of ZBP1 is a molecular switch regulating influenza-induced PANoptosis and perinatal lethality during development[J]. Journal of Biological Chemistry, 295(24): 8325-8330. [22] Kuriakose T, Man S M, Malireddi R K, et al.2016. ZBP1/DAI is an innate sensor of influenza virus triggering the NLRP3 inflammasome and programmed cell death pathways[J]. Science Immunology, 1(2): aag2045. [23] Kuriakose T, Zheng M, Neale G, et al.2018. IRF1 is a transcriptional regulator of ZBP1 promoting NLRP3 inflammasome activation and cell death during influenza virus infection[J]. Journal of Immunology, 200(4): 1489-1495. [24] Lacey C A, Miao E A.2020. Programmed cell death in the evolutionary race against bacterial virulence factors[J]. Cold Spring Harbor Perspectives in Biology, 12(2): a036459. [25] Lalaoui N, Boyden S E, Oda H, et al.2020. Mutations that prevent caspase cleavage of RIPK1 cause autoinflammatory disease[J]. Nature, 577(7788): 103-108. [26] Lee S, Karki R, Wang Y, et al.2021. AIM2 forms a complex with pyrin and ZBP1 to drive PANoptosis and host defence[J]. Nature, 597(7876): 415-419. [27] Li S, Zhang L, Yao Q, et al.2013. Pathogen blocks host death receptor signalling by arginine glcnacylation of death domains[J]. Nature, 501(7466): 242-246. [28] Malireddi R, Gurung P, Kesavardhana S, et al.2020a. Innate immune priming in the absence of TAK1 drives RIPK1 kinase activity-independent pyroptosis, apoptosis, necroptosis, and inflammatory disease[J]. Journal of Experimental Medicine, 217(3): jem.20191644. [29] Malireddi R, Kesavardhana S, Kanneganti T D.2019. ZBP1 and TAK1: Master regulators of NLRP3 inflammasome/pyroptosis, apoptosis, and necroptosis (PAN-optosis)[J]. Frontiers in Cellular and Infection Microbiology, 9: 406. [30] Malireddi R, Kesavardhana S, Karki R, et al.2020b. RIPK1 distinctly regulates Yersinia-induced inflammatory cell death, PANoptosis[J]. Immunohorizons, 4(12): 789-796. [31] Man S M, Karki R, Kanneganti T D.2017. Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases[J]. Nature Reviews Immunology, 277(1): 61-75. [32] Newton K, Wickliffe K E, Dugger D L, et al.2019. Cleavage of RIPK1 by caspase-8 is crucial for limiting apoptosis and necroptosis[J]. Nature, 574(7778): 428-431. [33] Pandori W J, Lima T S, Mallya S, et al.2019. Toxoplasma gondii activates a Syk-CARD9-NF-κB signaling axis and gasdermin D-independent release of IL-1β during infection of primary human monocytes[J]. PLOS Pathogens, 15(8): e1007923. [34] Paquette N, Conlon J, Sweet C, et al.2012. Serine/threonine acetylation of tgfbeta-activated kinase (TAK1) by Yersinia pestis YopJ inhibits innate immune signaling[J]. Proceedings of the National Academy of Sciences of the USA, 109(31): 12710-12715. [35] Pearson J S, Giogha C, Muhlen S, et al.2017. ESPL is a bacterial cysteine protease effector that cleaves RHIM proteins to block necroptosis and inflammation[J]. Nature Reviews Microbiology, 2: 16258. [36] Place D E, Lee S, Kanneganti T D.2021. PANoptosis in microbial infection[J]. Current Opinion in Microbiology, 59: 42-49. [37] Rajput A, Kovalenko A, Bogdanov K, et al.2011. RIG-I RNA helicase activation of IRF3 transcription factor is negatively regulated by caspase-8-mediated cleavage of the RIP1 protein[J]. Immunity, 34(3): 340-351. [38] Rothan H A, Arora K, Natekar J P, et al.2019. Z-DNA-Binding protein 1 is critical for controlling virus replication and survival in West nile virus encephalitis[J]. Frontiers in Microbiology, 10: 2089. [39] Said-Sadier N, Padilla E, Langsley G, et al.2010. Aspergillus fumigatus stimulates the NLRP3 inflammasome through a pathway requiring ROS production and the Syk tyrosine kinase[J]. The Public Library of Science, 5(4): e10008. [40] Schock S N, Chandra N V, Sun Y, et al.2017. Induction of necroptotic cell death by viral activation of the RIG-I or STING pathway[J]. Cell Death and Differentiation, 24(4): 615-625. [41] Shi J, Zhao Y, Wang K, et al.2015. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death[J]. Nature, 526(7575): 660-665. [42] Shu J, Yang L, Wei W, et al.2022. Identification of programmed cell death-related gene signature and associated regulatory axis in cerebral ischemia/reperfusion injury[J]. Frontiers in Genetics, 13: 934154. [43] Sundaram B, Kanneganti T D.2021. Advances in understanding activation and function of the NLRC4 inflammasome[J]. International Journal of Molecular Sciences, 22(3): 1048 [44] Tao P, Sun J, Wu Z, et al.2020. A dominant autoinflammatory disease caused by non-cleavable variants of RIPK1[J]. Nature, 577(7788): 109-114. [45] van Opdenbosch N, van Gorp H, Verdonckt M, et al.2017. Caspase-1 engagement and TLR-induced c-FLIP expression suppress ASC/caspase-8-dependent apoptosis by inflammasome sensors NLRP1b and NLRC4[J]. Cell Reports, 21(12): 3427-3444. [46] Wang Y, Kanneganti T D.2021. From pyroptosis, apoptosis and necroptosis to PANoptosis: A mechanistic compendium of programmed cell death pathways[J]. Computational and Structural Biotechnology Journal, 19: 4641-4657. [47] Wemyss M A, Pearson J S.2019. Host cell death responses to non-typhoidal Salmonella infection[J]. Frontiers in Immunology, 10: 1758. [48] Yan W T, Yang Y D, Hu X M, et al.2022. Do pyroptosis, apoptosis, and necroptosis (PANoptosis) exist in cerebral ischemia? Evidence from cell and rodent studies[J]. Neural Regeneration Research, 17(8): 1761-1768. [49] Yan W T, Zhao W J, Hu X M, et al.2023. PANoptosis-like cell death in ischemia/reperfusion injury of retinal neurons[J]. Neural Regeneration Research, 18(2): 357-363. [50] Yuan S, Akey C W.2013. Apoptosome structure, assembly, and procaspase activation[J]. Structure, 21(4): 501-515. [51] Zeyen T, Noristani R, Habib S, et al.2020. Microglial-specific depletion of TAK1 is neuroprotective in the acute phase after ischemic stroke[J].Journal of Molecular Medicine, 98(6): 833-847. [52] Zhang J, Wirtz S.2022. Does pyroptosis play a role in inflammasome-related disorders?[J]. International Journal of Molecular Sciences, 23(18): 10453. [53] Zheng M, Kanneganti T D.2020 The regulation of the ZBP1-NLRP3 inflammasome and its implications in pyroptosis, apoptosis, and necroptosis (PANoptosis)[J]. Nature Reviews Immunology, 297(1): 26-38. [54] Zheng M, Karki R, Vogel P, et al.2020a. Caspase-6 is a key regulator of innate immunity, inflammasome activation, and host defense[J]. Cell, 181(3): 674-687. [55] Zheng M, Williams E P, Malireddi R, et al.2020b. Impaired NLRP3 inflammasome activation/pyroptosis leads to robust inflammatory cell death via caspase-8/RIPK3 during coronavirus infection[J]. Journal of Biological Chemistry, 295(41): 14040-14052. |
[1] |
WU Bing-Yan, CAO Yuan, LIU Si-Li, LIU Ya-Mei, DING Xiang, LING Yi-Qiang, HU Wei, FANG Man-Xin, LIU Ben, WANG Xiao-Yue. Effects of Oxidative Stress on Testicular Structure and Expression of Genes Related to Testosterone Synthesis in Roosters (Gallus gallus)[J]. 农业生物技术学报, 2024, 32(3): 605-616. |
|
|
|
|