|
|
Research Progress on Application of Genome Sequencing in the Meat Quality Improvement in Domestic Animals |
YU He, LI Rui, YIN Xu-Dong, PANG Wei-Jun* |
Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China |
|
|
Abstract The focus of China's breeding work previously focused on improving important economic trait indicators such as meat production, daily weight gain, and litter size of livestock. With the improvement of consumption level, breeding livestock and poultry breeds with excellent production performance to produce meat products with good flavor and delicate taste is the key to the high-quality development of China's livestock industry in the future. Skeletal muscle fibers and intramuscular fat are closely related to livestock meat quality and directly affect the juiciness, color, and flavor of meat. In recent years, research methods based on genome sequencing technologies have been evolved, including a selection signaling method that can mine important candidate genes, genome-wide association analysis, and a genome-wide selection method that uses genomic information for variety improvement, which have incomparable advantages over traditional meat quality improvement methods. Based on the summary of livestock meat quality evaluation indexes and important influencing factors, in this paper the application of mainstream genome sequencing technologies in livestock meat quality improvement are reviewed, and the advantages and disadvantages of different methods are analyzed. In addition, the latest technical tools and theoretical studies that can be combined with genome sequencing technology and may play a role in livestock meat quality improvement are introduced. This review provides scientific guidance for the development of genome-wide selection technology and theory for livestock meat quality trait improvement.
|
Received: 03 May 2023
|
|
Corresponding Authors:
*pwj1226@nwafu.edu.cn
|
|
|
|
[1] 迟志娇, 澈力木格,成功等. 2022. 秦川牛FABP4、FASN和TCAP基因多态性位点与生长和胴体性状的关联性分析[J]. 农业生物技术学报, 30(08): 1488-1498. (Chi Z J, Chelmeg, Cheng G, et al.2022. Association analysis between polymorphisms in FABP4, FASN and TCAP genes and growth and carcass traits in Qinchuan cattle (Bos taurus)[J]. Journal of Agricultural Biotechnology, 30(08): 1488-1498) [2] 刘家鑫, 魏霞, 邓天宇, 等. 2019. 绵羊全基因组ROH检测及候选基因鉴定[J].畜牧兽医学报, 50(08): 1554-1566. (Liu J X, Wei X, Deng T Y, et al.2019. Genome-wide scan for run of homozygosity and identification of corresponding candidate genes in sheep populations[J]. Acta Veterinaria et Zootechnica Sinica, 50(08): 1554-1566.) [3] 陶伟, 侯黎明, 王彬彬, 等. 2022. 利用全基因组选择信号方法鉴别影响猪肉滴水损失的候选基因[J]. 畜牧兽医学报, 53(05): 1373-1383. (Tao W, Hou L M, Wang B B, et al.2022. Identification of candidate genes affecting drip loss in pork by genome-wide selection signal method[J]. Acta Veterinaria et Zootechnica Sinica, 53(05): 1373-1383.) [4] 徐云碧, 杨泉女, 郑洪建等. 2020.靶向测序基因型检测(GBTS)技术及其应用[J].中国农业科学, 2020, 53(15): 2983-3004. (Xu Y B, Yang Q N, Zheng H J, et al.2020. Genotyping by target sequencing (GBTS) and its applications[J]. Scientia Agricultura Sinica, 53(15): 2983-3004.) [5] 张君胜,徐盼, 倪黎纲, 等. 2023. 杜洛克猪全基因组ROH检测及候选基因鉴定[J]. 中国畜牧杂志, 59(08): 1-18. (Zhang J S, Xu P, Ni L G, et al.2023. Whole genome ROH detection and candidate gene identification of Duroc pigs[J]. Chinese Journal of Animal Science, 59(08): 1-18.) [6] Al-Mamun H A, Kwan P, Clark S A, et al.2015. Genome-wide association study of body weight in Australian Merino sheep reveals an orthologous region on OAR6 to human and bovine genomic regions affecting height and weight[J]. Genetics, Selection, Evolution, 47(1): 66. [7] Ashikari M, Sakakibara H, Lin S, et al.2005. Cytokinin oxidase regulates rice grain production[J]. Science, 309(5735): 741-745. [8] Berry D P, Conroy S, Pabiou T, et al.2017. Animal breeding strategies can improve meat quality attributes within entire populations[J]. Meat Science, 132: 6-18. [9] Bickhart D M, Rosen B D, Koren S, et al.2017. Single-molecule sequencing and chromatin conformation capture enable de novo reference assembly of the domestic goat genome[J]. Nature Genetics, 49(4): 643-650. [10] Bolormaa S, Hayes B J, van der Werf J H, et al.2016. Detailed phenotyping identifies genes with pleiotropic effects on body composition[J]. Biomedcentral Genomics, 17: 224. [11] Brito L F, Clarke S M, McEwan J C, et al.2017. Prediction of genomic breeding values for growth, carcass and meat quality traits in a multi-breed sheep population using a HD SNP chip[J]. Biomedcentral Genetics, 18(1): 7. [12] Cai L, Huang Y, Zhong L, et al.2023. Using phenotypic and genotypic big data to investigate the effect of muscle fiber characteristics on meat quality and eating quality traits in pigs[J]. Meat Science, 198: 109122. [13] Cao X K, Cheng J, Huang Y Z, et al.2019. Growth performance and meat quality evaluations in three-way cross cattle developed for the tibetan plateau and their molecular understanding by integrative omics analysis[J]. Journal of Agricultural and Food Chemistry, 67(1): 541-550. [14] Ceglia L, Niramitmahapanya S, Price L L, et al.2013. An evaluation of the reliability of muscle fiber cross-sectional area and fiber number measurements in rat skeletal muscle[J]. Biological Procedures Online, 15(1): 6. [15] Ding R, Yang M, Quan J, et al.2019. Single-locus and multi-locus genome-wide association studies for intramuscular fat in duroc pigs[J]. Frontiers in Genetics, 10: 619. [16] Eid J, Fehr A, Gray J, et al.2009. Real-time DNA sequencing from single polymerase molecules[J]. Science, 323(5910): 133-138. [17] Elsik C G, Tellam R L, Worley K C, et al.2009. The genome sequence of taurine cattle: A window to ruminant biology and evolution[J]. Science, 324(5926): 522-528. [18] Esfandyari H, Thekkoot D, Kemp R, et al.2020. Genetic parameters and purebred-crossbred genetic correlations for growth, meat quality, and carcass traits in pigs[J]. Journal of Animal Science, 98(12): skaa379. [19] Gao G, Gao N, Li S, et al.2021. Genome-wide association study of meat quality traits in a three-way crossbred commercial pig population[J]. Frontiers in Genetics. 12: 614087. [20] Goodwin S, McPherson J D, McCombie W R.2016. Coming of age: Ten years of next-generation sequencing technologies[J]. Nature Reviews Genetics, 17(6): 333-351. [21] Gordo D G M, Espigolan R, Bresolin T, et al.2018. Genetic analysis of carcass and meat quality traits in Nelore cattle1[J]. Journal of Animal Science, 96(9): 3558-3564. [22] Groenen M A, Archibald A L, Uenishi H, et al.2012. Analyses of pig genomes provide insight into porcine demography and evolution[J]. Nature, 491(7424): 393-398. [23] Hausman G J, Dodson M V, Ajuwon K, et al.2009. Board-invited review: The biology and regulation of preadipocytes and adipocytes in meat animals[J]. Journal of Animal Science, 87(4): 1218-1246. [24] Hayes B J, Bowman P J, Chamberlain A J, et al.2009a. Invited review: Genomic selection in dairy cattle: Progress and challenges[J]. Journal of Dairy Science, 92(2): 433-443. [25] Hayes B J, Chamberlain A J, Maceachern S, et al.2009b. A genome map of divergent artificial selection between Bos taurus dairy cattle and Bos taurus beef cattle[J]. Animal Genetics, 40(2): 176-184. [26] He Y, Ma J, Zhang F, et al.2016. Multi-breed genome-wide association study reveals heterogeneous loci associated with loin eye area in pigs[J]. Journal of Applied Genetics, 57(4): 511-518. [27] Huang Y, Cai L, Duan Y, et al.2022. Whole-genome sequence-based association analyses on an eight-breed crossed heterogeneous stock of pigs reveal the genetic basis of skeletal muscle fiber characteristics[J]. Meat Science, 194: 108974. [28] Janssen I, Heymsfield S B, Wang Z M, et al.2000. Skeletal muscle mass and distribution in 468 men and women aged 18-88 yr[J]. Journal of Applied Physiology, 89(1): 81-88. [29] Jiang Y, Xie M, Chen W.2014. The sheep genome illuminates biology of the rumen and lipid metabolism[J]. Science, 344(6188): 1168-1173. [30] Lee J B, Kang Y J, Kim S G, et al.2021. GWAS and post-GWAS high-resolution mapping analyses identify strong novel candidate genes influencing the fatty acid composition of the longissimus dorsi muscle in pigs[J]. Genes (Basel), 12(9): 1323. [31] Lee S H, Kim S, Kim J M.2022. Genetic correlation between biopsied and post-mortem muscle fibre characteristics and meat quality traits in swine[J]. Meat Science, 186: 108735. [32] Legarra A, Aguilar I, Misztal I.2009. A relationship matrix including full pedigree and genomic information[J]. Journal of Dairy Science, 92(9): 4656-4663. [33] Li H, Xu C, Meng F, et al.2022b. Genome-wide association studies for flesh color and intramuscular fat in (Duroc × Landrace × Large White) crossbred commercial pigs[J]. Genes, 13(11): 2131. [34] Liu H, Hou L, Zhou W, et al.2022. Genome-wide association study and FST analysis reveal four quantitative trait loci and six candidate genes for meat color in pigs[J]. Frontiers in Genetics, 13: 768710. [35] Li J, Yang Y, Tang C, et al.2022a. Changes in lipids and aroma compounds in intramuscular fat from Hu sheep[J]. Food Chemistry, 383: 132611. [36] Li J, Zhang J, Yang Y, et al.2021. Comparative characterization of lipids and volatile compounds of Beijing Heiliu and Laiwu Chinese black pork as markers[J]. Food Research International, 146: 110433. [37] Li X, Yang J, Shen M, et al.2020. Whole-genome resequencing of wild and domestic sheep identifies genes associated with morphological and agronomic traits[J]. Nature Communications, 11(1): 2815. [38] Lopez B I, Santiago K G, Lee D, et al.2020. Single-step genomic evaluation for meat quality traits, sensory characteristics, and fatty-acid composition in duroc pigs[J]. Genes (Basel), 11(9): 1062. [39] Lopes F B, Baldi F, Passafaro T L, et al.2021. Genome-enabled prediction of meat and carcass traits using Bayesian regression, single-step genomic best linear unbiased prediction and blending methods in Nelore cattle[J]. Animal, 15(1): 100006. [40] Lucherk L W, O'quinn T G, Legako J F, et al.2016. Consumer and trained panel evaluation of beef strip steaks of varying marbling and enhancement levels cooked to three degrees of doneness[J]. Meat Science, 122: 145-154. [41] Ma J, Ren J, Guo Y, et al.2009. Genome-wide identification of quantitative trait loci for carcass composition and meat quality in a large-scale White Duroc x Chinese Erhualian resource population[J]. Animal Genetics, 40(5): 637-647. [42] Ma Y, Ding X, Qanbari S, Weigend S, et al.2015. Properties of different selection signature statistics and a new strategy for combining them[J]. Heredity (Edinb), 115(5): 426-436. [43] Magalhães A F B, Schenkel F S, Garcia D A, et al.2019. Genomic selection for meat quality traits in Nelore cattle[J]. Meat Science, 148: 32-37. [44] Marulanda J J, Mi X, Utz H F, et al.2021. Optimum breeding strategies using genomic and phenotypic selection for the simultaneous improvement of two traits[J]. Theoretical and Applied Genetics, 134(12): 4025-4042. [45] Matarneh S K, Silva S L, Gerrard D E.2021. New insights in muscle biology that alter meat quality[J]. Annual Review of Animal Biosciences, 16(9): 355-377. [46] Mészárosová M, Mészáros G, Moravčíková N,et al.2022. Within- and between-breed selection signatures in the original and improved valachian sheep[J]. Animals (Basel), 12(11): 1346. [47] Meuwissen T H E, Hayes B J, Goddard M E.2001. Prediction of total genetic value using genome-wide dense marker maps[J]. Genetics, 157(4): 1819-1829. [48] Moghaddar N, Khansefid M, van der Werf J H J, et al.2019. Genomic prediction based on selected variants from imputed whole-genome sequence data in Australian sheep populations[J]. Genetics, Selection, Evolution, 51(1): 72. [49] Naserkheil M, Lee D H, Kong H S, et al.2021. Estimation of genetic parameters and correlation between yearling ultrasound measurements and carcass traits in Hanwoo cattle[J]. Animals (Basel), 11(5): 1425. [50] Nejati-Javaremi A, Smith C, Gibson J P.1997. Effect of total allelic relationship on accuracy of evaluation and response to selection[J]. Journal of Animal Science, 75(7): 1738-1745. [51] Niu Q, Zhang T, Xu L, et al.2021. Integration of selection signatures and multi-trait GWAS reveals polygenic genetic architecture of carcass traits in beef cattle[J]. Genomics, 113(5): 3325-3336. [52] Ojeda A, Huang LS, Ren J, et al.2008. Selection in the making: A worldwide survey of haplotypic diversity around a causative mutation in porcine IGF2[J]. Genetics, 178(3): 1639-1652. [53] Payne G W, Bearden S E.2006. The microcirculation of skeletal muscle in aging[J]. Microcirculation,13(4): 275-277. [54] Qanbari S, Simianer H.2014. Mapping signatures of positive selection in the genome of livestock[J]. Livestock Science, 166: 133-143. [55] Ramayo-Caldas Y, Mach N, Esteve-Codina A, et al.2012. Liver transcriptome profile in pigs with extreme phenotypes of intramuscular fatty acid composition[J]. Biomedcentral Genomics, 11(13): 547. [56] Rosen B D, Bickhart D M, Schnabel R D, et al.2020. De novo assembly of the cattle reference genome with single-molecule sequencing[J]. GigaScience, 9(3): giaa021. [57] Rovadoscki G A, Pertile S F N, Alvarenga A B, et al.2018. Estimates of genomic heritability and genome-wide association study for fatty acids profile in Santa Inês sheep[J]. Biomedcentral Genomics, 19(1): 375. [58] Sabeti P C, Schaffner S F, Fry B, et al.2006. Positive natural selection in the human lineage[J]. Science, 312(5780): 1614-1620. [59] Sanger F, Air G, Barrell B, et al.1977. Nucleotide sequence of bacteriophage φX174 DNA[J]. Nature, 265: 687-695. [60] Sangiovanni M, Granata I, Thind A S, et al.2019. From trash to treasure: Detecting unexpected contamination in unmapped NGS data[J]. Biomedcentral Bioinformatics, 20(Suppl 4): 168. [61] Schumacher M, DelCurto-Wyffels H, Thomson J, et al.2022. Fat deposition and fat effects on meat quality-A review[J]. Animals, 15(12): 1550. [62] Shen Y, Wang H, Xie J, et al.2021. Trait-specific selection signature detection reveals novel loci of meat quality in large white pigs[J]. Frontiers in Genetics, 12: 761252. [63] Sun T, Shen J, Achilli A, et al.2020. Genomic analyses reveal distinct genetic architectures and selective pressures in buffaloes[J]. Gigascience, 9(2): giz166. [64] Tam V, Patel N, Turcotte M, et al.2019. Benefits and limitations of genome-wide association studies[J]. Nature Reviews Genetics, 20(8): 467-484. [65] Tang Z, Xu J, Yin L, et al.2019. Genome-wide association study reveals candidate genes for growth relevant traits in pigs[J]. Frontiers in Genetics, 10: 302. [66] Tosser-Klopp G, Bardou P, Bouchez O, et al.2014. Design and characterization of a 52K SNP chip for goats[J]. PLOS ONE, 9(1): e86227. [67] Urban J M, Bliss J, Lawrence C E, et al.2015. Sequencing ultra-long DNA molecules with the Oxford Nanopore MinION[J]. bioRxiv, DOI: 10.1101/019281. [68] Viterbo V S, Lopez B I M, Kang H, et al.2018. Genome wide association study of fatty acid composition in Duroc swine[J]. Asian-Australasian Journal of Animal Sciences, 31(8): 1127-1133. [69] Wang J, Zhou Z, Zhang Z, et al.2018. Expanding the BLUP alphabet for genomic prediction adaptable to the genetic architectures of complex traits[J]. Heredity, 121: 648-662. [70] Wang K, Wu P X, Chen D, et al.2021. Detecting the selection signatures in Chinese Duroc, Landrace, Yorkshire, Liangshan, and Qingyu pigs[J]. Functional & Integrative Genomics, 21(5-6): 655-664. [71] Wang Z, Heo M, Lee R C, et al.2001. Muscularity in adult humans: Proportion of adipose tissue-free body mass as skeletal muscle[J]. American Journal of Human Biology 13(5): 612-619. [72] Warr A, Affara N, Aken B, et al.2020. An improved pig reference genome sequence to enable pig genetics and genomics research[J]. GigaScience, 9(6): giaa051. [73] Wiener P, Wilkinson S.2011. Deciphering the genetic basis of animal domestication[J]. Proceedings of the Royal Society Biological Sciences, 278(1722): 3161-3170. [74] Xiang T, Li T, Li J, et al.2023. Using machine learning to realize genetic site screening and genomic prediction of productive traits in pigs[J]. FASEB Journal, 37(6): e22961. [75] Yang Y L, Lian J M, Xie B K, et al., 2019. Chromosome-scale de novo assembly and phasing of a Chinese indigenous pig genome[J]. bioRxiv, DOI: 10.1101/770958. [76] Yu Y, Sun D, Liu Y, et al.2020. A novel electrochemical paper sensor for low-cost detection of 5-methyltetrahydrofolate in egg yolk[J]. Food Chemistry, 346: 128901. [77] Zhang L, Guo Y, Wang L, et al.2020. Genomic variants associated with the number and diameter of muscle fibers in pigs as revealed by a genome-wide association study[J].Animal, 14(3): 475-481. [78] Zhang L, Liu J, Zhao F, et al.2013. Genome-wide association studies for growth and meat production traits in sheep[J]. Public Library of Science One, 8(6): e66569. [79] Zhang Y, Zhang J, Gong H, et al.2019. Genetic correlation of fatty acid composition with growth, carcass, fat deposition and meat quality traits based on GWAS data in six pig populations[J]. Meat Science, 150: 47-55. [80] Zhu C, Li N, Cheng H, et al.2021. Genome wide association study for the identification of genes associated with tail fat deposition in Chinese sheep breeds[J]. Biology Open, 10(5): bio054932. [81] Zhuang Z, Wu J, Qiu Y, et al.2023. Improving the accuracy of genomic prediction for meat quality traits using whole genome sequence data in pigs[J]. Journal of Animal Science Biotechnology, 14(1): 67. [82] Zhuang Z, Wu J, Xu C, et al.2022. The genetic architecture of meat quality traits in a crossbred commercial pig population[J]. Foods, 11(19): 3143. [83] Zhuang Z, Xu L, Yang J, et al.2020. Weighted single-step genome-wide association study for growth traits in chinese simmental beef cattle[J]. Genes (Basel), 11(2): 189. |
|
|
|