The ABC Transporter Protein from Bacillus safensis Improves the Manganese Tolerance and Biofilm Formation in Escherichia coli
LIU Cheng-Jie1, NIU Xi1, HUANG Shi-Hui2, WANG Jia-Fu1,*, RAN Xue-Qin2
1 College of Life Sciences/Institute of Agricultural Bioengineering/Key Laboratory of Conservation and Innovation of Highland Mountain Plant Resources of Ministry of Education, Guizhou University, Guiyang 550025, China; 2 College of Animal Science, Guizhou University, Guiyang 550025, China
Abstract:The ATP-binding cassette transporter protein (ABCT) in cells plays a crucial role in the tolerance of toxic substances, which participates in bacterial growth and the elimination of toxic compounds. Bacillus safensis ST7 has strong manganese oxidation ability, and the ABCT (Gene ID: 46572106) was significantly upregulated under manganese stress, which may be related to the manganese tolerance of Bacillus safensis. In order to analyze the role of ABCT in manganese stress in B. safensis, PCR, qPCR, and SDS-PAGE methods were used to clone the ABCT gene in B. safensis ST7. Overexpression vectors were constructed and transformed into Escherichia coli BL21(DE3). The growth curve, biofilm formation ability, manganese tolerance, and manganese oxidation activity of the recombinant strain were measured to investigate the effect of heterologous expression of the ABCT gene on the manganese tolerance and manganese oxidation activity of E. coli. The results showed that the recombinant strain carried the complete ABCT gene, and the expression level of the recombinant plasmid pET28a-ABCT was significantly upregulated in BL21(DE3) cells (P<0.05). Its growth was not affected, and its biofilm formation ability was enhanced. Under manganese stress, the expression of ABCT gene increased by 1.41 times, with time and concentration dependence. Compared with the control strain, the recombinant strain showed an increase of over 1.5 times in manganese tolerance concentration and manganese oxidation activity. The results suggested that the ABCT gene of B. safensis ST7 was involved in the manganese transport and biofilm formation process in E. coli. Overexpression of this gene could enhance the oxidative activity and tolerance of E. coli cells to manganese (Ⅱ). This study is important for the development and application of manganese-oxidizing bacteria.
刘成洁, 牛熙, 黄世会, 王嘉福, 冉雪琴. 沙福芽胞杆菌ABC转运蛋白促进大肠杆菌的锰耐受和生物膜形成[J]. 农业生物技术学报, 2025, 33(5): 1130-1140.
LIU Cheng-Jie, NIU Xi, HUANG Shi-Hui, WANG Jia-Fu, RAN Xue-Qin. The ABC Transporter Protein from Bacillus safensis Improves the Manganese Tolerance and Biofilm Formation in Escherichia coli. 农业生物技术学报, 2025, 33(5): 1130-1140.
[1] 曹冠华. 2017. 嗜鱼外瓶霉(Exophiala pisciphila) ABC转运蛋白基因与宿主重金属耐性的研究[D]. 博士学位论文, 云南大学, 导师: 赵之伟, pp. 52-57. (Cao G H.2017. Functions and the vital roles of ABC transporter protein-encoding genes in the tolerance of Exophiala pisciphila to heavy metals[D]. Thesis for Ph.D., Yunnan University, Supervisor: Zhao Z W, pp. 52-57.) [2] 邓华. 2012. 短毛蓼超富集锰的机理及对锰污染土壤的修复效应研究[D]. 博士学位论文, 浙江大学, 导师: 陈英旭, 施积炎, pp. 6. (Deng H. 2012. Mechanism of Mn hyperaccumulation in Polygonum pubescens blume and its effects on remediation of Mn contaminated soil[D]. Thesis for Ph.D., Zhejiang University, Supervisor: Chen Y X, Shi J Y, pp. 6.) [3] 丁雪瑞. 2020. 红景天苷对锰诱导耳毒性保护作用的研究[D]. 博士学位论文, 中国人民解放军空军军医大学, 导师: 卢连军, 王卫龙, pp. 14-15. (Ding X R.2020. Salidroside prevents ototoxicity induced by manganesein cochlear organotypic cultures and in vivo[D]. Thesis for Ph.D., Air Force Medical University, Supervisor: Lu L J, Wang W L, pp. 14-15.) [4] 黄慧敏. 2019. 耐锰细菌筛选及对构树修复锰污染土壤影响的研究[D]. 博士学位论文, 湖南农业大学, 导师: 赵运林, pp. 7-9. (Huang H M.2019. Screening of Mn-tolerant bacteria and theireffects on Mn-contaminated soil rehabilitationby Broussonetia papyrifera[D]. Thesis for Ph.D., Hunan Agricultural University, Supervisor: Zhao Y L, pp. 7-9.) [5] 李旭娟, 李纯佳, 田春艳, 等. 2024. 甘蔗硝酸盐转运蛋白1/肽转运蛋白家族6.4基因(ScNPF6.4)克隆及其调控分蘖功能分析[J]. 作物学报, 50(08): 2131-2142. (Li X J, Li C J, Tian C Y, et al.2024. Cloning of sugarcane nitrate transporter protein 1/peptide transporter protein family 6.4 gene (ScNPF6.4) and functional analysis of its regulation of tillering[J]. The Crop Journal, 50(08): 2131-2142.) [6] 林子彦, 王锟, 黄点秋, 等. 2024. 互花米草根系促生菌的筛选及其挥发性有机物质鉴定[J]. 南方农业学报, 55(07): 2169-2180.(Lin Z Y, Wang K, Huang D Q, et al. 2024. Screening of rhizosphere-promoting bacteria and identification of volatile organic compounds in the root system of euphorbiaceae[J]. Journal of Southern Agriculture, 55(07): 2169-2180.) [7] 龙红. 2020. 沙福芽孢杆菌耐锰基因的筛选与鉴定[D]. 硕士学位论文, 贵州大学, 导师: 王嘉福, 冉雪琴, pp. 40-41. (Long H.2020. Screening and identification of manganese tolerance genes of Bacillus safensis[D]. Thesis for M.S., Guizhou University, Supervisor: Wang J F, Ran X Q, pp. 40-41.) [8] 孙尚琛. 2022. 嗜根寡养单胞菌JC1对重金属Pb(Ⅱ)的吸附转运及应答机制的研究[D]. 博士学位论文, 兰州理工大学, 导师: 陈吉祥, pp. 131-140. (Sun S C.2022. Adsorption, transport and response mechanism of heavy metal Pb(Ⅱ) by Stenotrophomonas rhizophila JC1[D]. Thesis for Ph.D., Lanzhou University of Technology, Supervisor: Chen J X, pp. 131-140.) [9] 唐佩佳. 2021. 一株大豆促生菌Bacillus safensis J2的分离、筛选及其促生功能研究[D]. 硕士学位论文, 东北林业大学, 导师: 顾成波, pp. 6 (Tang P J. 2021. Isolation, screening of Bacillus safensis J2 from pigeon pea [Cajanus cajan (L.) millsp] and its plant growth promoting function[D]. Thesis for M.S., Northeast Forestry University, Supervisor: Gu C B, pp. 6.) [10] 田群, 许瑶, 喻昌燕, 等. 2017. 耐锰细菌鉴定与锰胁迫下的生理响应[J]. 山地农业生物学报, 36(03): 23-28. (Tian Q, Xu Y, Yu C Y, et al.2017. Identification of manganese-resistant bacteria and their physiological response under manganese stress[J]. Journal of Mountain Agriculture and Biology, 36(03): 23-28.) [11] 王华丙, 张振义, 包锐, 等. 2007. ABC转运蛋白的结构与转运机制[J]. 生命的化学, (03): 208-210. (Wang H B, Zhang Z Y, Bao R, et al. 2007. Structure and transport mechanism of ABC transporter proteins[J]. Chemistry of Life, (03): 208-210.) [12] 王雅萍. 2020. 常见肠道抑菌剂胁迫下克罗诺杆菌tolC基因的作用研究探讨[D]. 硕士学位论文, 合肥工业大学, 导师: 叶应旺, 吴清平, pp. 31-32 (Wang Y P. 2020. Study on the tolC gene of Cronobacter SPP. under the stress of common intestinal bacteriostatic agents[D]. Thesis for M.S., Hefei University of Technology, Supervisor: Ye Y W, Wu Q P, pp. 31-32.) [13] 文雅. 2021. 铬还原菌Lysinibacillus fusiformis 15-4的转录组学研究[D]. 硕士学位论文, 兰州交通大学, 导师: 李师翁, pp. 35-59 (Wen Y. 2021. Transcriptomic characteristics of a chromium reducing Lysinibacillus fusiformis strain 15-4[D]. Thesis for M.S., Lanzhou Jiaotong University, Supervisor: Li S W, pp. 35-59.) [14] 吴建菊, 冯守帅. 2024. 蓝光调控生物膜关键基因提高大肠杆菌耐酸性[J]. 食品与发酵工业, 50(15): 1-7. (Wu J J, Feng S S.2024. Blue light modulates key biofilm genes to improve acid resistance in Escherichia coli[J]. Food and Fermentation Industries, 50(15): 1-7.) [15] 郑冬超, 夏新莉, 尹伟伦. 2013. 生长素促进拟南芥AtNRT1.1基因表达增强硝酸盐吸收[J]. 北京林业大学学报, 35(02): 80-85. (Zheng D C, Xia X L, Yin W L.2013. Auxin promotes nitrate uptake by up-regulating AtNRT1.1 gene transcript level in Arobidopsis thaliana[J]. Journal of Beijing Forestry University, 35(02): 80-85.) [16] 朱忠梅. 2022. 沙福芽孢杆菌ST7菌株锰胁迫的应答机制研究[D]. 硕士学位论文, 贵州大学, 导师: 王嘉福, 冉雪琴, pp. 48-51. (Zhu Z M.2022. Study on the response mechanism of manganese stress in Bacillus safensis ST7[D]. Thesis for M.S., Guizhou University, Supervisor: Wang J F, Ran X Q, pp. 48-51.) [17] Beis K.2015. Structural basis for the mechanism of ABC transporters[J]. Biochemical Society Transactions, 43(5): 889-893. [18] Ford R C, Beis K.2019. Learning the ABCs one at a time: Structure and mechanism of ABC transporters[J]. Biochemical Society Transactions, 47(1): 23-36. [19] Green C E, Chaney R L, Bouwkamp J.2016. Increased zinc supply does not inhibit cadmium accumulation by rice (Oryza sativa L.)[J]. Journal of Plant Nutrition, 40(6): 869-877. [20] Gueldry O, Lazard M, Delort F, et al.2003. Ycf1p-dependent Hg(Ⅱ) detoxification in Saccharomyces cerevisiae[J]. European Journal of Biochemistry, 270(11): 2486-2496. [21] Janulczyk R, Ricci S, Bjorck L.2003. MtsABC is important for manganese and iron transport, oxidative stress resistance, and virulence of Streptococcus pyogenes[J]. Infection Immunity, 71(5): 2656-2664. [22] Kim M J, Lim E S, Kim J S.2019. Enzymatic inactivation of pathogenic and nonpathogenic bacteria in biofilms in combination with chlorine[J].Journal of Food Protection, 82(4): 605-614. [23] Lin M H, Shu J C, Huang H Y, et al.2012. Involvement of iron in biofilm formation by Staphylococcus aureus[J]. PLOS One, 7(3): e34388. [24] Pereira E J, Ramaiah N.2019. Chromate detoxification potential of Staphylococcus sp. isolates from an estuary[J]. Ecotoxicology, 28(4): 457-466. [25] Sippel K H, Bacik J, Quiocho F A, et al.2014. Preliminary time-of-flight neutron diffraction studies of Escherichia coli ABC transport receptor phosphate-binding protein at the protein C rystallography station[J]. Acta Crystallographica. Section F, Structural Biology Communications, 70(Pt 6): 819-822. [26] Song W Y, Sohn E J, Martinoia E, et al.2003. Engineering tolerance and accumulation of lead and cadmium in transgenic plants[J]. Nature Biotechnology, 21(8):914-919. [27] Tebo B M, Johnson H A, Mccarthy J K, et al.2005. Geomicrobiology of manganese (Ⅱ) oxidation[J]. Trends in Microbiology, 13(9): 421-428. [28] Vanderlinde E M, Harrison J J, Muszyński A, et al.2010. Identification of a novel ABC transporter required for desiccation tol erance, and biofilm formation in Rhizobium leguminosarum bv. viciae 3841[J]. FEMS Microbiology Ecology, 71(3): 327-340. [29] Watts-Williams S J, Cavagnaro T R.2018. Arbuscular mycorrhizal fungi increase grain zinc concentration and modify the expression of root ZIP transporter genes in a modern barley (Hordeum vulgare) cultivar[J]. Plant Science, 274: 163-170. [30] Xu Z, Shao J, Li B, et al.2013. Contribution of bacillomycin D in Bacillus amyloliquefaciens SQR9 to a ntifungal activity and biofilm formation[J]. Applied and Environmental Microbiology, 79(3): 808-815. [31] Yang H, Murphy A S.2010. Functional expression and characterization of Arabidopsis ABCB, AUX 1 and PIN auxin transporters in Schizosaccharomyces pombe[J]. The Plant Journal, 59(1): 179-191. [32] Yang Z, Yang F, Liu J L, et al.2021. Heavy metal transporters: Functional mechanisms, regulation, and appli cation in phytoremediation[J]. The Science of the Total Environment, 809: 151099. [33] Zhou K, Zhou L, Lim Q E, et al.2011. Novel reference genes for quantifying transcriptional responses of Escherichia coli to protein overexpression by quantitative PCR[J]. BMC Molecular Biology, 12: 18.