Abstract:The shift of soil microbial community is one of the main factors affecting continuous cropping. It has been observed that continuous cropping obstacles exist in celery (Apium graveolens) cultivation. However, the effects of continuous cropping of celery on rhizosphere soil microbial community remain unclear. In this study, Illumina MiSeq was used to study the shift of bacterial and fungal communities in the rhizosphere of celery after continuous cropping. The results showed that after continuous monoculture, the rhizosphere soil bacteria richness increased but the diversity did not change significantly, while the abundance and diversity of fungi decreased significantly. Taxonomic analysis further showed that Proteobacteria, Actinobacteriota, Acidobacteriota and Chloroflexi were the dominant phyla in all the sample bacterial communities, while Ascomycota was the absolute dominant phyla. After continuous cropping, the rhizosphere soil fungal community richness of diseased plants decreased significantly compared with that of healthy plants (P<0.05), decreased significantly compared with the soil without celery planting (P<0.01). In addition, LEfSe (linear discriminant analysis effect size) analysis results showed that the beneficial bacteria genera were significantly enriched in the healthy, diseased and uncultivated soils samples of the same field. Meanwhile, the significant increase (P<0.05) of the abundance of pathogenic fungus Stemphylium sp. in the rhizosphere of diseased plants indicated that the fungus might be an important factor causing continuous cropping disorder of celery. This study revealed the shift of bacterial and fungal community diversity and composition in celery rhizosphere soil under continuous cropping, which would be helpful to understand the microecological environment of celery rhizosphere soil under continuous cropping.
[1] 陈倬. 2022. 芹菜根际微生物群落对配合施肥的响应[D]. 硕士论文, 宁夏大学, 导师: 吴宏亮, pp. 16-30. (Chen Z.2022. Responses of rhizosphere microbial communities to soil dressing on continuous cropping celery[D]. Thesis for M.S., Ningxia University, Supervisor: Wu B L, pp. 16-30.) [2] 崔纪超, 武小霞, 林怡, 等. 2022. 甘薯根际土壤微生物群落结构及多样性分析[J]. 西南农业学报, 35(09): 2086-2095. (Cui J C, Wu X X, Lin Y, et al.2022. Analysis on community structure and diversity in rhizosphere soil of sweet potato[J]. Southwest China Journal of Agricultural Sciences, 35(09): 2086-2095.) [3] 付宽宽, 王小兵, 汪晓丽, 等. 2022. 不同改良措施对设施芹菜根际土壤微生物群落结构的影响[J]. 中国瓜菜, 35(08): 42-49. (Fu K K, Wang X B, Wang X L, et al.2022. Different improvement measures affects microbial in rhizosphere soil of celery in protected field[J]. China Cucurbits and Vegetables, 35(08): 42-49.) [4] 黄飞燕, 肜磊, 薛至勤, 等. 2023. 烟草根结线虫病对烟株根际土壤真菌群落结构及多样性的影响[J]. 西南农业学报, 36(03): 584-592. (Huang F Y, Rong L, Xue Z Q, et al.2023. Effects of tobacco root-node nematode disease on structure and diversity of fungal community in tobacco rhizosphere soil[J]. Southwest China Journal of Agricultural Sciences, 36(03): 584-592.) [5] 徐佳, 王燕春. 2020. 桔梗新病害—匍柄霉叶斑病的病原生物学特性及药剂敏感性分析[J]. 菌物学报, 39(02): 312-322. (Xu J, Wang Y C.2020. Fungicide sensitivity and biological characteristics of pathogen of new disease of bellflower (Platycodon grandiflorum)[J]. Mycosystema, 39(02): 312-322.) [6] 李戌清, 田忠玲, 王宏等. 2016. 浙江番茄灰叶斑病病原菌[J]. 菌物学报, 35(09): 1151-1156. (Li X Q, Tian Z L, Wang H, et al.2016. A pathogen causing grey leaf spot of tomato in Zhejiang province[J]. Mycosystema, 35(09): 1151-1156.) [7] 刘传和, 贺涵, 何秀古, 等. 2021. 不同连作年限菠萝园土壤差异代谢物和细菌群落结构分析[J]. 生物技术通报, 37(08): 162-175. (Liu C H, He H, He X G, et al.2021. Analysis of differential metabolites and bacterial community structure in soils of a pineapple orchard in different continuous-cropping years[J]. Biotechnology Bulletin, 37(08): 162-175.) [8] 刘福童, 李茂森, 闫超超, 等. 2023. 烤烟连作条件下土壤微生物群落结构变化及驱动因素分析[J]. 华中农业大学学报, 42(02): 139-146. (Liu F T, Li M S, Yan C C.et al.2023. Changing characteristics and driving factors of soil microbial community structure under continuous cropping of flue-cured tobacco[J]. Journal of Huazhong Agricultural University, 42(02): 139-146.) [9] 刘辉, 韦璐璐, 朱龙发, 等. 2023. 鞘氨醇单胞菌的研究进展[J]. 微生物学通报, 50(06): 2738-2752. (Liu H, Wei L L, Zhu L F, et al.2023. Sphingomonas genus[J]. Microbiology China, 50(06): 2738-2752.) [10] 刘诗蓉, 王红兰, 孙辉, 等. 2022. 半夏连作对根际土壤微生物群落的影响研究[J]. 中草药, 53(04): 1148-1155. (Liu S R, Wang H L, Sun H, et al.2022. Effects of continuous cropping of Pinellia ternata on rhizospheric microbial community[J]. Chinese Traditional and Herbal Drugs, 53(04): 1148-1155.) [11] 刘素, 吴宏亮, 陈倬, 等. 2023. 连作年限影响芹菜根际土壤微生物群落结构及功能类群[J]. 中国农业气象, 44(5): 372-385. (Liu S, Wu H L, Chen Z, et al.2023. Continuous cropping years affect the rhizosphere soil microbial community structure and functional taxa of celery[J]. Chinese Journal of Agrometeorology, 44(5): 372-385.) [12] 孟彤彤, 崔兴帅, 朱宁, 等. 2023. 不同生长年限党参根系微生物群落结构和多样性研究[J]. 中草药, 54(15): 4992-5002. (Meng T T, Cui X S, Zhu N, et al.2023. Root microbial community structure and diversity of Codonopsis pilosula in different growth years[J]. Chinese Traditional and Herbal Drugs, 54(15): 4992-5002.) [13] 宁琪, 陈林, 李芳, 等. 2022. 被孢霉对土壤养分有效性和秸秆降解的影响[J]. 土壤学报, 59(1): 206-217. (Ning Q, Chen L,Li F,et al.2022. Effects of Mortierella on nutrient availability and straw decomposition in soil[J]. Acta Pedologica Sinica, 59(1): 206-217.) [14] 孙文庆, 康亚龙, 刘建国, 等. 2017. 加工番茄连作对土壤微生物群落多样性的影响[J]. 西北农业学报, 26(07): 1099-1110. (Sun W Q, Kang Y L, Liu J G, et al.2017. Influence of continuous cropping of processing tomato on diversity of microflora in the rhizosphere soil[J]. Acta Agriculturae Boreali-occidentalis Sinica, 26(07): 1099-1110.) [15] 王光华, 刘俊杰, 于镇华, 等. 2016. 土壤酸杆菌门细菌生态学研究进展[J]. 生物技术通报, 32(02): 14-20. (Wang G H, Liu J J, Yu Z H, et al.2016. Research progress of Acidobacteria ecology in soils[J]. Biotechnology Bulletin, 32(02): 14-20.) [16] 王玲娜. 2010. 内蒙芹菜连做障碍微生物修复研究[D]. 硕士学位论文, 西北农林科技大学, 导师: 薛泉宏, pp. 11-15. (Wang L N.2010. Study on microbial remediation of Apium graveolens continuous cropping obstacle in Inner Mongolia[D]. Thesis for M.S., Northwest A & F University, Supervisor: Xue Q H, pp. 16-30.) [17] 鲜文东, 张潇橦, 李文均. 2020. 绿弯菌的研究现状及展望[J]. 微生物学报, 60(09): 1801-1820. (Xian W D, Zhang X T, Li W J.2020. Research status and prospect on bacterial phylum Chloroflexi[J]. Acta Microbiologica Sinica, 60(09): 1801-1820.) [18] 曾广娟, 冯阳, 吴舒, 等. 2022. 基于高通量测序的有机种植蔬菜地土壤微生物多样性分析[J]. 南方农业学报, 53(09): 2403-2414. (Zeng G J, Feng Y, Wu S, et al.2022. Soil microbial diversity analysis in organic vegetable field based on high-throughput sequencing[J]. Journal of Southern Agriculture, 53(09): 2403-2414.) [19] 张敏, 马淼. 2022. 甘草根际土壤微生物群落对长期连作的响应[J]. 生态学报, 42(22): 9017-9025. (Zhang M, Ma M.2022. Response of rhizosphere soil microbial community to long-term continuous cropping of Glycyrrhiza glabra L.[J]. Acta Ecologica Sinica, 42(22): 9017-9025.) [20] 赵帆, 赵密珍, 王钰, 等. 2017. 不同连作年限草莓根际细菌和真菌多样性变化[J]. 微生物学通报, 44(06): 1377-1386. (Zhao F, Zhao M Z, Wang Y, et al.2017. Biodiversity of bacteria and fungi in rhizosphere of strawberry with different continuous cropping years[J]. Microbiology China, 44(06): 1377-1386.) [21] 赵源, 邓蓉, 黄钧. 2022. 半夏连作障碍成因及防治研究进展[J]. 应用与环境生物学报, 28(04): 1102-1108. (Zhao Y, Deng R, Huang J.2022. Research advances on causes and prevention for the continuous cropping obstacle of Pinellia ternata[J]. Chinese Journal of Applied and Environmental Biology, 28(04): 1102-1108.) [22] 郑立伟, 赵阳阳, 王一冰, 等. 2022. 不同连作年限甜瓜种植土壤性质和微生物多样性[J]. 微生物学通报, 49(01): 101-114. (Zheng L W, Zhao Y Y, Wang Y B, et al.2022. Soil properties and microbial diversity in the muskmelon fields after continuous cropping for different years[J]. Microbiology China, 49(01): 101-114.) [23] 周杨, 石思雨, 司友涛, 等. 2022. 三氯异氰尿酸对马铃薯连作障碍土壤微生物群落组成的影响[J]. 土壤, 54(04): 756-762. (Zhou Y, Shi S Y, Si Y T, et al.2022. Effects of tarichloroisocyanuric acid on soil microbial community composition under potato continuous cropping obstacle[J]. Soils, 54(04): 756-762.) [24] Chen D, Wang M, Wang G, et al.2022. Functional organic fertilizers can alleviate tobacco (Nicotiana tabacum L.) continuous cropping obstacle via ameliorating soil physicochemical properties and bacterial community structure[J]. Frontiers in Bioengineering and Biotechnology, 10: 1023693. [25] Chen Y, Du J, Li Y, et al.2022. Evolutions and managements of soil microbial community structure drove by continuous cropping[J]. Frontiers in Microbiology, 13: 839494. [26] Du L, Huang B, Du N, et al.2017. Effects of garlic/cucumber relay intercropping on soil enzyme activities and the microbial environment in continuous cropping[J]. HortScience, 52(1): 78-84. [27] Gao Z, Han M, Hu Y, et al.2019. Effects of continuous cropping of sweet potato on the fungal community structure in rhizospheric soil[J]. Frontiers in Microbiology, 10: 2269. [28] Guo L L, Yin W L, Guo D L, et al.2017. Variations of bacterial biodiversity in rhizosphere soils of oil tree peony cropping continuously for different years[J]. Scientia Silvae Sinicae, 53(11): 131-141. [29] Li J, Chen X, Li S, et al.2020. Variations of rhizospheric soil microbial communities in response to continuous Andrographis paniculata cropping practices[J]. Botanical Studies, 61(1): 1-13. [30] Li M Y, Hou X L, Wang F, et al.2018. Advances in the research of celery, an important Apiaceae vegetable crop[J]. Critical Reviews in Biotechnology, 38(2): 172-183. [31] Li Y, Fang F, Wei J, et al.2019. Humic acid fertilizer improved soil properties and soil microbial diversity of continuous cropping peanut: A three-year experiment[J]. Scientific Reports, 9: 12014. [32] Nagella P, Ahmad A, Kim S J, et al.2012. Chemical composition, antioxidant activity and larvicidal effects of essential oil from leaves of Apium graveolens[J]. Immunopharmacology and Immunotoxicology, 34(2): 205-209. [33] Pang Z, Dong F, Liu Q, et al.2021. Soil metagenomics reveals effects of continuous sugarcane cropping on the structure and functional pathway of rhizospheric microbial community[J]. Frontiers in Microbiology, 12: 627569. [34] Pang Z, Tayyab M, Kong C, et al.2021. Continuous sugarcane planting negatively impacts soil microbial community structure, soil fertility, and sugarcane agronomic parameters[J]. Microorganisms, 9(10): 2008. [35] Schoch C L, Sung G H, López-Giráldez F, et al.2009. The Ascomycota tree of life: A phylum-wide phylogeny clarifies the origin and evolution of fundamental reproductive and ecological traits[J]. Systematic Biology, 58(2): 224-239. [36] Singh R K, Singh P, Li H B, et al.2020. Diversity of nitrogen-fixing rhizobacteria associated with sugarcane: A comprehensive study of plant-microbe interactions for growth enhancement in Saccharum spp.[J]. BMC Plant Biology, 20(1): 1-21. [37] Sun L, Gao J, Huang T, et al.2015. Parental material and cultivation determine soil bacterial community structure and fertility[J]. FEMS Microbiology Ecology, 91(1):1-10. [38] Wang T, Hao Y, Zhu M, et al.2019. Characterizing differences in microbial community composition and function between Fusarium wilt diseased and healthy soils under watermelon cultivation[J]. Plant and Soil, 438: 421-433. [39] Wu L, Chen J, Khan M U, et al.2018. Rhizosphere fungal community dynamics associated with Rehmannia glutinosa replant disease in a consecutive monoculture regime[J]. Phytopathology, 108(12): 1493-1500. [40] Xiong W, Zhao Q, Zhao J, et al.2015. Different continuous cropping spans significantly affect microbial community membership and structure in a vanilla-grown soil as revealed by deep pyrosequencing[J]. Microbial Ecology, 70: 209-218. [41] Yu Y, Yang J, Zeng S, et al.2017. Soil pH, organic matter, and nutrient content change with the continuous cropping of cunninghamia lanceolata plantations in south China[J]. Journal of Soils & Sediments, 17: 2230-2238. [42] Zeng J, Liu J, Lu C, et al.2020. Intercropping with turmeric or ginger reduce the continuous cropping obstacles that affect Pogostemon cablin (Patchouli)[J]. Frontiers in Microbiology, 11: 579719.