Effects of Straw Returning and Nitrogen Fertilizer Application on Rice (Oryza sativa) Growth, Soil Properties and Microbial Diversity in the Early Stage
LUO Jia-Run, SONG Wen-Jie, LIU Wei, ZHANG Da-Hong, IANG Xun, LU Bi-Lin*
School of Agriculture, Yangtze University/Wetland Ecology and Agricultural Utilization Engineering Research Center, Ministry of Education/Hubei Provincial Key Laboratory of Waterlogging and Wetland Agriculture, Jingzhou 434025, China
Abstract:The purpose of this study was to investigate the effects of nitrogen combined application on soil-rice (Oryza sativa) microbial system under straw returning condition, and to balance the effects of straw decomposition and nitrogen competition in rice growth at the early stage of nitrogen application, this study was based on plot experiments, with no fertilization treatment as the control (CK), the base fertilizer was set as the ratio treatment test of 5 different proportions of ammonium bicarbonate+compound fertilizer,including 100% compound fertilizer (S0), 20% ammonium bicarbonate+80% compound fertilizer (S1), 40% ammonium bicarbonate+60% compound fertilizer (S2), 60% ammonium bicarbonate+40% compound fertilizer (S3) and 80% ammonium bicarbonate+20% compound fertilizer (S4) to study the effect of nitrogen fertilizer on rice growth, soil properties and microbial diversity after 6 d of nitrogen fertilizer application impact. The results showed that in the early stage of nitrogen fertilizer application, soil organic matter, pH value, available phosphorus and available potassium decreased with the increase of ammonium bicarbonate, while the contents of ammonium nitrogen and nitrate nitrogen increased; Fresh weight, root surface area, root volume and plant carbon and nitrogen accumulation increased first and then decreased. Except fresh weight under ground, treatment S2 was the highest, and was significantly different from other treatments (P<0.05). The Chao1 index and Shannon index of soil bacterial and fungal communities first decreased and then increased. The treatment S2 was the lowest, and the ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) communities related to ammonia nitrogen had no significant difference among the treatments; the β diversity index, the number of soil bacteria exclusive operational taxonomic unit (OTU) was higher in treatments S2 and S4, while the number of fungi exclusive OTU was the lowest in treatment S2. The dominant soil bacterial phyla in the soil were Chloroflexi, Actinobacteriota, Proteobacteria and Acidobacteriota, among which treatment S2 improved the relative phyla of Actinobacteriota. The abundance of Chloroflexi, Proteobacteria and Acidobacteriota decreased to a significant level. The dominant fungal phyla in soil were Ascomycota and Basidiomycota. According to redundancy analysis (RDA) analysis, Actinobacteriota and Basidiomycota were significantly positively correlated with soil available nitrogen content and rice growth indexs, and Proteobacteria and Ascomycota were significantly correlated with soil available K, soil organic matter (SOM), and Olsen P, while significantly negatively correlated with rice growth indexes. Chloroflexi was significantly positively correlated with soil pH, and the treatment of S2 was the most obvious with Actinobacteriota. Thaumarchaeota was significantly positively correlated with rice growth indexs, NH4+-N, soil easily oxidizes organic carbon (EOC) and soil dissolved organic carbon (DOC), and significantly negatively correlated with pH, NO3--N, olsen P and available K. The reasonable combination of nitrogen fertilizer method S2 under straw returning could balance the nutrient requirements of soil microorganisms and rice. This study is of great significance for soil fertility and crop growth to apply nitrogen fertilizer reasonably under straw returning.
罗嘉润, 宋文杰, 刘伟, 张大弘, 江勋, 卢碧林. 秸秆还田配施氮肥早期对水稻生长、土壤性质及微生物多样性的影响[J]. 农业生物技术学报, 2023, 31(10): 2019-2034.
LUO Jia-Run, SONG Wen-Jie, LIU Wei, ZHANG Da-Hong, IANG Xun, LU Bi-Lin. Effects of Straw Returning and Nitrogen Fertilizer Application on Rice (Oryza sativa) Growth, Soil Properties and Microbial Diversity in the Early Stage. 农业生物技术学报, 2023, 31(10): 2019-2034.
[1] 杜康, 谢源泉, 林赵淼, 等. 2016. 秸秆还田条件下氮肥对水稻幼苗生长及养分吸收的影响[J]. 南京农业大学学报, 39(1): 8. (Du K, Xie Y Q, Lin Z M, et al.2016. Effects of nitrogen fertilizer on rice seedling growth and nutrient uptake under straw returning conditions[J]. Journal of Nanjing Agricultural University, 39(1): 8.) [2] 狄霖, 王娟娟, 马云. 2022. 秸秆还田及配施氮肥对土壤微生物群落结构及铁氧化菌丰度的影响[J]. 扬州大学学报(农业与生命科学版), 43(1): 97~104. (Di L, Wang J J, Ma Y.2022. Effects of straw returning and nitrogen fertilizer application on soil microbial community structure and iron oxidizing bacteria abundance[J]. Journal of Yangzhou University (Agriculture and Life Sciences Edition), 43(1): 97~104.) [3] 冯晓赟, 万鹏, 李洁, 等. 2016. 秸秆还田与氮肥配施对中南地区稻田土壤固碳和温室气体排放的影响[J]. 农业资源与环境学报, 33(06): 508-517. (Feng X J, Wan P, Li J, et al.2016. Effects of straw returning and nitrogen fertilizer application on soil carbon sequestration and greenhouse gas emissions in paddy fields in the central and southern regions[J]. Journal of Agricultural Resources and Environment, 33(06): 508-517.) [4] 郭梨锦, 曹凑贵, 张枝盛, 等. 2013. 耕作方式和秸秆还田对稻田表层土壤微生物群落的短期影响[J]. 农业环境科学学报, 32(8): 1577~1584. (Guo L J, Cao C G, Zhang Z S, et al.2013. Short term effects of tillage methods and straw returning on microbial community in surface soil of paddy field[J]. Journal of Agro-Environment Science, 32(8): 1577~1584.) [5] 高斯倜, 曾宪楠, 王麒. 2018. 秸秆还田对水稻生长发育及产量影响的研究进展[J]. 黑龙江农业科学, 1: 132~136. (Gao S C, Zeng X N, Wang L.2018. Research progress on the effect of straw returning on rice growth and yield[J]. Heilongjiang Agricultural Sciences, 1: 132~136.) [6] 高珍珍, 王蓉, 龚松玲, 等. 2020. 不同类型秸秆还田对稻田土壤氨氧化微生物群落结构的影响[J]. 生态科学, 39(4): 66-73. (Gao Z Z, Wang R, Gong S L, et al.2020. Effects of different types of straw returning on the community structure of ammonia oxidizing microbial community in paddy soil[J]. Ecological Science, 39(4): 66-73.) [7] 贺纪正, 张丽梅. 2013. 土壤氮素转化的关键微生物过程及机制[J]. 微生物学通报, 40(01): 98-108. (He J Z, Zhang L M.2013. Key microbial processes and mechanisms of soil nitrogen transformation[J]. Microbiology China, 40(01): 98-108.) [8] 李涛, 葛晓颖, 何春娥, 等. 2016. 豆科秸秆, 氮肥配施玉米秸秆还田对秸秆矿化和微生物功能多样性的影响[J]. 农业环境科学学报, 35(12): 2377~2384. (Li T, Ge X Y, He C E, et al.2016. Effects of legume straw, nitrogen fertilizer combined with maize straw returning to field on straw mineralization and microbial functional diversity[J]. Journal of Agro-Environment Science, 35(12): 2377~2384.) [9] 李玮, 乔玉强, 陈欢, 等. 2014. 秸秆还田和施肥对砂姜黑土理化性质及小麦-玉米产量的影响[J]. 生态学报, 34(17): 5052-5061. (Li W, Qiao Y Q, Chen H, et al.2014. Effects of straw returning and fertilization on physicochemical properties of sand ginger black soil and wheat-maize yield[J]. Acta Ecologica Sinica, 34(17): 5052-5061.) [10] 刘骁蓓, 涂仕华, 孙锡发, 等. 2013. 秸秆还田与施肥对稻田土壤微生物生物量及固氮菌群落结构的影响[J]. 生态学报, 33(17): 5210~5218. (Liu X B, Tu S H, Sun X F, et al.2013. Effects of straw returning and fertilization on soil microbial biomass and nitrogen-fixing bacteria community structure in paddy field[J]. Acta Ecologica Sinica, 33(17): 5210~5218.) [11] 李秀英, 赵秉强, 李絮花, 等. 2005. 不同施肥制度对土壤微生物的影响及其与土壤肥力的关系[J]. 中国农业科学, 38(8): 1591~1599. (Li X Y, Zhao B Q, Li X H, et al.2005. Effects of different fertilization regimes on soil microorganisms and their relationship with soil fertility[J]. Scientia Agricultura Sinica, 38(8): 1591~1599.) [12] 李自刚, 李兴道, 蒋媛媛, 等. 2008. 水稻秸秆还田对河南沿黄稻区土壤细菌群落分子多态性影响[J]. 河南农业大学学报, 42(1): 90-94. (Li Z G, Li X D, Jiang Y Y, et al.2008. Effects of rice straw returning on the molecular polymorphism of soil bacterial community in the yellow rice area of Henan[J]. Journal of Henan Agricultural University, 42(1): 90-94.) [13] 刘耀斌, 徐聪, 汪吉东, 等. 2021. 玉米生长条件下潮土N2O排放来源定量解析[J]. 生态与农村环境学报, 37(11): 1449-1457. (Liu Y B, Xu C, Wang J D, et al.2021. Quantitative analysis of N2O emission sources in fluvo-aquic soil under maize growing conditions[J]. Journal of Ecology and Rural Environment, 37(11): 1449-1457.) [14] 沈菊培, 张丽梅, 贺纪正. 2011. 几种农田土壤中古菌, 泉古菌和细菌的数量分布特征[J]. 应用生态学报, 22(11):2996-3002. (Shen J P, Zhang L M, He J Z.2011. Quantitative distribution characteristics of archaea, spring archaea and bacteria in several farmland soils[J]. Chinese Journal of Applied Ecology, 22(11): 2996-3002.) [15] 苏卫, 冯跃华, 许桂玲, 等. 2019. 秸秆还田与施氮量对喀斯特地区杂交籼稻干物质积累和产量的影响[J]. 核农学报, 33(9): 1856-1864. (Su W, Feng Y H, Xu G L, et al.2019. Effects of straw returning and nitrogen application on dry matter accumulation and yield of hybrid indica rice in Karst area[J]. Journal of Nuclear Agronomy, 33(9): 1856-1864.) [16] 王芳. 2019. 秸秆腐解的微生物群落演替过程研究[D]. 硕士学位论文, 西北农林科技大学, 导师: 韦革宏, pp. 1-7, 9-13. (Wang F.2019. Study on the succession process of microbial community in straw decomposition[D]. Thesis for M.S., Northwest A&F University, Supervisor: Wei G H, pp. 1-7, 9-13.) [17] 吴晶, 王娟娟, 朱腾义, 等. 2018. 不同施肥和栽培措施对水稻土壤微生物多样性的影响综述[J]. 江苏农业科学, 46(10): 14-17. (Wu J, Wang J J, Zhu T Y, et al.2018. A review of the effects of different fertilization and cultivation measures on soil microbial diversity in rice[J]. Jiangsu Agricultural Science, 46(10): 14-17.) [18] 王娟娟, 朱紫娟, 钱晓晴, 等. 2022. 全年稻麦秸秆还田对稻田土壤细菌群落结构的影响[J]. 中国土壤与肥料, 4:57-65. (Wang J J, Zhu Z J, Qian X Q, et al.2022. Effects of rice and wheat straw returning to the field throughout the year on the soil bacterial community structure in paddy fields[J]. Soils and Fertilizers Sciences in China, 4: 57-65.) [19] 王宁, 罗佳琳, 赵亚慧, 等. 2020. 不同麦秸还田模式对稻田土壤微生物活性和微生物群落组成的影响[J]. 农业环境科学学报, 39(1): 125-133. (Wang N, Luo J L, Zhao Y H, et al.2020. Effects of different wheat straw returning patterns on soil microbial activity and microbial community composition in paddy field[J]. Journal of Agro-Environment Science, 39(1): 125-133.) [20] 王倩倩, 尧水红, 张斌, 等. 2017. 秸秆配施氮肥还田对水稻土酶活性的影响[J]. 土壤, 49(1): 19-26. (Wang Q Q, Yao S H, Zhang B, et al.2017. Effects of straw combined with nitrogen fertilizer returning to the field on enzyme activities in paddy soil[J]. Soils, 49(1): 19-26.) [21] 王士超, 闫志浩, 王瑾瑜,等. 2020. 秸秆还田配施氮肥对稻田土壤活性碳氮动态变化的影响[J]. 中国农业科学, 53(4): 782-794. (Wang S C, Yan Z H, Wang J Y, et al.2020. Effects of straw returning combined with nitrogen fertilizer on dynamic changes of soil active carbon and nitrogen in paddy field[J]. Scientia Agricultura Sinica,53(4): 782-794.) [22] 王小玲, 马琨, 伏云珍, 等. 2020. 免耕覆盖及有机肥施用对土壤真菌群落组成及多样性的影响[J]. 应用生态学报, 31(3): 890-898. (Wang X L, Ma K, Fu Y Z, et al.2020. Effects of no-tillage mulching and organic fertilizer application on soil fungal community composition and diversity[J]. Chinese Journal of Applied Ecology, 31(3): 890-898.) [23] 肖健, 吴银秀, 杨尚东, 等. 2021. 秸秆覆盖还田对桑园土壤真菌群落结构组成的影响[J]. 西南农业学报, 34(12): 2707-2713. (Xiao J, Wu Y X, Yang S D, et al.2021. Effects of straw mulching on soil fungal community structure in mulberry orchards[J].Southwest China Journal of Agricultural Sciences, 34(12): 2707-2713.) [24] 辛励, 陈延玲, 刘树堂, 等. 2016. 长期定位秸秆还田对土壤真菌群落的影响[J]. 华北农学报, 31(5): 186-192. (Xin L, Chen Y L, Liu S T, et al.2016. Effects of long-term positioning of straw returning on soil fungal community[J]. Acta Agriculturae Boreali-Sinica, 31(5): 186-192.) [25] 许仁良, 王建峰, 张国良, 等. 2010. 秸秆, 有机肥及氮肥配合使用对水稻土微生物和有机质含量的影响[J]. 生态学报,(30)13: 3584-3590. (Xu R L, Wang J F, Zhang G L, et al.2010. Effects of combined use of straw, organic fertilizer and nitrogen fertilizer on microbial and organic matter content of paddy soil[J]. Acta Ecologica Sinica,(30)13: 3584-3590.) [26] 严奉君, 孙永健, 马均, 等. 2015. 秸秆覆盖与氮肥运筹对杂交稻根系生长及氮素利用的影响[J]. 植物营养与肥料学报, 21(1): 23-35. (Yan F J, Sun Y J, Ma J, et al.2015. Effects of straw mulching and nitrogen fertilizer management on root growth and nitrogen utilization in hybrid rice[J]. Journal of Plant Nutrition and Fertilizers, 21(1): 23-35.) [27] 袁红朝, 秦红灵, 刘守龙, 等. 2011. 长期施肥对红壤性水稻土细菌群落结构和数量的影响[J]. 中国农业科学, 44(22): 4610-4617. (Yuan H C, Qing H L, Liu S L, et al.2011. Effects of long-term fertilization on bacterial community structure and quantity in red soil paddy soil[J]. Chinese Agricultural Science, 44(22): 4610-4617.) [28] 杨馨逸, 刘小虎, 韩晓日. 2016. 施氮量对不同肥力土壤氮素转化及其利用率的影响[J]. 中国农业科学, 49(13):2561-2571. (Yang X Y, Liu X H, Han X R.2016. Effects of nitrogen application rate on nitrogen conversion and utilization rate of soil with different fertility[J]. Scientia Agricultura Sinica, 49(13): 2561-2571.) [29] 张丹, 付斌, 胡万里, 等. 2017. 秸秆还田提高水稻-油菜轮作土壤固氮能力及作物产量[J]. 农业工程学报, 33(9):133-140. (Zhang D, Fu B, Hu W L, et al.2017. Improving soil nitrogen fixation capacity and crop yield in rice-rape rotation by straw returning[J]. Transactions of the Chinese Society of Agricultural Engineering, 33(9): 133-140.) [30] 张凤翔, 周明耀, 周春林, 等. 2006. 水肥耦合对水稻根系形态与活力的影响[J]. 农业工程学报, 22(5): 197-200. (Zhang F X, Zhou M Y, Zhou C L, et al.2006. Effects of water and fertilizer coupling on rice root morphology and vitality[J]. Transactions of the Chinese Society of Agricultural Engineering, 22(5): 197-200.) [31] 张翰林, 白娜玲, 郑宪清, 等. 2021. 秸秆还田与施肥方式对稻麦轮作土壤细菌和真菌群落结构与多样性的影响[J]. 中国生态农业学报(中英文), 29(3): 531-539. (Zhang H L, Bai N L, Zheng X Q, et al.2021. Effects of straw returning and fertilization on soil bacterial and fungal community structure and diversity in rice-wheat rotation[J]. Chinese Journal of Eco-Agriculture, 29(3): 531-539.) [32] Breulmann M, Masyutenko N P, Kogut B M, et al.2014. Short-term bioavailability of carbon in soil organic matter fractions of different particle sizes and densities in grassland ecosystems[J]. Science of the Total Environment, 497-498: 29-37. [33] Cahn M D, Hummel J W, Brouer B H.1994. Spatial analysis of soil fertility for site-specific crop management[J]. Soil Science Society of America Journal, 58(4): 1240-1248. [34] Chen R, Senbayram M, Blagodatsky S, et al.2014. Soil C and N availability determine the priming effect: Microbial N miningand stoichiometric decomposition theories[J]. Global Change Biology, 20(7): 2356-2367. [35] Chen S, Waghmode T R, Sun R, et al.2019. Root-associated microbiomes of wheat under the combined effect of plant development and nitrogen fertilization[J]. Microbiome, 7(1): 1-13. [36] Chen S, Zhou Y, Chen Y, et al.2018. Fastp: An ultra-fast all-in-one FASTQ preprocessor[J]. Bioinformatics, 34(17): 884-890. [37] Crawford D L.1978. Lignocellulose decomposition by selected streptomyces strains[J]. Applied and Environmental Microbiology, 35(6): 1041-1045. [38] Dedysh S N, Yilmaz P.2018. Refining the taxonomic structure of the phylum Acidobacteria[J]. International Journal of Systematic and Evolutionary Microbiology, 68(12): 3796-3806. [39] Ding J, Jiang X, Ma M, et al.2016. Effect of 35 years inorganic fertilizer and manure amendment on structure of bacterial and archaeal communities in black soil of northeast China[J]. Applied Soil Ecology, 105: 187-195. [40] Doran J W.1980. Soil microbial and biochemical changes associated with reduced tillage[J]. Soil Science Society of America Journal, 44(4): 765-771. [41] Edgar R C.2013. UPARSE: Highly accurate OTU sequences from microbial amplicon reads[J]. Nature Methods,10(10): 996-998. [42] Eo J, Park K.2016. Long-term effects of imbalanced fertilization on the composition and diversity of soil bacterial community[J]. Agriculture, Ecosystems & Environment, 231: 176-182. [43] E Silva M C P, Semenov A V, Schmitt H, et al.2013. Microbe-mediated processes as indicators to establish the normal operating range of soil functioning[J]. Soil Biology and Biochemistry, 57: 995-1002. [44] Han Y, Ma W, Zhou B, et al.2020. Effects of straw-return method for the maize-rice rotation system on soil properties and crop yields[J]. Agronomy, 10(4): 461. [45] Huber K J, Overmann J.2018. Vicinamibacteraceae fam. nov., the first described family within the subdivision 6 Acidobacteria[J]. International Journal of Systematic and Evolutionary Microbiology, 68(7): 2331-2334. [46] Könneke M, Bernhard A E, De La Torre J R, et al.2005. Isolation of an autotrophic ammonia-oxidizing marine archaeon[J]. Nature, 437(7058): 543-546. [47] Li H, Abbas T, Cai M, et al.2021. Cd bioavailability and nitrogen cycling microbes interaction affected by mixed amendments under paddy-pakchoi continued planting[J]. Environmental Pollution, 275: 116542. [48] Li X B, He H B, Zhang X D, et al.2019. Distinct responses of soil fungal and bacterial nitrate immobilization to land conversion from forest to agriculture[J]. Soil Biology and Biochemistry, 134(7): 81-89. [49] Liu C, Lu M, Cui J, et al.2014. Effects of straw carbon input on carbon dynamics in agricultural soils: A meta‐analysis[J]. Global Change Biology, 20(5): 1366~1381. [50] Magoč T, Salzberg S L.2011. FLASH: Fast length adjustment of short reads to improve genome assemblies[J]. Bioinformatics. 27(21): 2957-2963. [51] Spang A, Poehlein A, Offre P, et al.2005. Isolation of an autotrophic ammoniaoxidizing marine archaeon[J]. Nature, 437(7058): 543-546. [52] Spohn M W A H.2020. Effects of nitrogen and phosphorus addition on microbial community composition and element cycling in a grassland soil[J]. Soil Biology and Biochemistry, (1): 115-117. [53] Stackebrandt E, Goebel B M.1994. Taxonomic note: A place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology[J]. International Journal of Systematic Bacteriology, 44(4): 846-849. [54] Sun R, Zhang X, Guo X, et al.2015. Bacterial diversity in soils subjected to long-term chemical fertilization can be more stably maintained with the addition of livestock manure than wheat straw[J]. Soil Biology and Biochemistry, 88: 9-18. [55] Tang J, Zhang R, Li H, et al.2020. Effect of the applied fertilization method under full straw return on the growth of mechanically transplanted rice[J]. Plants, 9(3): 399. [56] Tang J C, Chen Q H, Hao R Q, et al.2021. The effects of different nitrogen application and seeding rates on the yield and growth traits of direct seeded rice (oryza sativa l.) using correlation analysis[J]. Applecolenv Res, 19(1): 667-681. [57] Wang J, Zhang H, Li X, et al.2014. Effects of tillage and residue incorporation on composition and abundance of microbial communities of a fluvo-aquic soil[J]. European Journal of Soil Biology, 65: 70-78. [58] Wang Q, Garrity G M, Tiedje J M, et al.2007. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy[J]. Applied and Environment Microbiology, 73(16): 5261-5267. [59] Wang Y, Zhao X, Guo Z, et al.2018. Response of soil microbes to a reduction in phosphorus fertilizer in rice-wheat rotation paddy soils with varying soil P levels[J]. Soil and Tillage Research, 181: 127-135. [60] Ward N L, Challacombe J F, Janssen P H, et al.2009. Three genomes from the phylum Acidobacteria provide insight into the lifestyles of these microorganisms in soils[J].Applied and Environmental Microbiology, 75(7): 2046-2056. [61] Wu M, Qin H, Chen Z, et al.2011. Effect of long-term fertilization on bacterial composition in rice paddy soil[J]. Biology and Fertility of Soils, 47(4): 397-405. [62] Yang H, Meng Y, Feng J.2020a. Direct and indirect effects of long-term ditch-buried straw return on soil bacterial community in a rice-wheat rotation system[J]. Land Degradation & Development, 31(7): 851-867. [63] Yang H, Li Y, Zhai S, et al.2020b. Long term ditch-buried straw return affects soil fungal community structure and carbon-degrading enzymatic activities in a rice-wheat rotation system[J]. Applied Soil Ecology, (155): 103660. [64] Yang H, Xu M, Li Y, et al.2020c. The impacts of ditch-buried straw layers on the interface soil physicochemical and microbial properties in a rice-wheat rotation system[J]. Soil and Tillage Research, 202: 104656. [65] Yan J, Wang L, Hu Y, et al.2018. Plant litter composition selects different soil microbial structures and in turn drives different litter decomposition pattern and soil carbon sequestration capability[J]. Geoderma, 319: 194-203. [66] Yang Y D, Zhang M C, Hu J W, et al.2017. Effects of nitrogen fertilizer application on abundance and community structure of ammonia oxidizing bacteria and archaea in a North China agricultural soil[J]. Acta Ecologica Sinica, 37(11): 3636-3646. [67] Yu C, Li Y, Mo R, et al.2020. Effects of long-term straw retention on soil microorganisms under a rice-wheat cropping system[J]. Archives of Microbiology, 202(7): 1915-1927.