Abstract:Fusarium proliferatum is a phytopathogenic fungus with a wide host range and serious damage, but its pathogenic mechanism is not well understood. Effectors play an important role in the infection process of phytopathogenic fungi. The prediction, screening, and identification of effectors are of great importance in exploring the mechanism of host-pathogen interaction. In this study, based on the transcriptome sequencing results of F. proliferatum, 43 putative effectors were screened by signal peptide identification, transmembrane domain screening, cysteine number analysis, and Pathogen Host Interactions database (PHI-base) analysis. Functional studies were carried out on one of the candidate effectors, feruloyl esterase FpESD. Yeast system validation revealed that the signal peptide encoded by the N-terminal 20 amino acids of FpESD possesses secretion activity. The homologous recombination strategy was used to generate the FpESD knockout mutant (ΔFpESD), and the complementary strain (ΔFpESD-C) was obtained through complementation experiments. Growth rate measurements, spore yield assessments, and spore length analysis demonstrated that the deletion of the FpESD gene significantly reduced fungal growth rate and conidia production (P<0.05), with shorter conidia length observed for the knockout mutant. Additionally, environmental stress tests revealed that ΔFpESD exhibited significantly reduced sensitivity to CaCl2, MgCl2, and Congo red (P<0.05), indicating that FpESD was involved in regulating the response to environmental stress. Pathogenicity assays using plate inoculation showed that the disease index of alfalfa (Medicago sativa) seedlings infected by ΔFpESD was significantly lower than that of the wild-type strain (P<0.05), suggesting that FpESD positively regulated the pathogenicity of F.proliferatum. This study helps to elucidate the pathogenic molecular mechanism of F. proliferatum, and also provides ideas for the in-depth study of F. proliferatum effectors.
王艺潼, 李海博, 王雨晴, 吴志宏, 高贻宙. 层出镰刀菌分泌蛋白阿魏酸酯酶(FpESD)的鉴定及功能研究[J]. 农业生物技术学报, 2025, 33(2): 386-399.
WANG Yi-Tong, Li Hai-Bo, WANG Yu-Qing, WU Zhi-Hong, GAO Yi-Zhou. Identification and Functional Analysis of the Secretory Protein Feruloyl Esterase (FpESD) in Fusarium proliferatum. 农业生物技术学报, 2025, 33(2): 386-399.
[1] 高贻宙, 何四明, 王艺潼, 等. 2024. 层出镰刀菌乌头酸酶家族的功能研究[J]. 微生物学报, 4(64): 1306-1321. (Gao Y Z, He S M, Wang Y T, et al.2024. Functions of the aconitase family in Fusarium proliferatum[J]. Acta Microbiologica Sinica, 4(64): 1306-1321.) [2] 李重阳, 王毓富, 林杨, 等. 2019. 稻曲病菌Six1类效应蛋白UvSix1-1的功能研究[J]. 植物病理学报, 49(01): 27-34. (Li Z Y, Wang Y F, Lin Y, et al.2019. Functional identification of Six1-like effector UvSix1-1 in Ustilaginoidea virens[J]. Acta Phytopathologica Sinica, 49(01): 27-34.) [3] 卢梦瑶, 徐祥彬, 孟兰环, 等. 2020. 芒果胶孢炭疽菌(Colletotrichum gloeosporioides) CgFAE基因对孢子产量及菌丝生长的影响[J]. 分子植物育种, 18(22): 7342-7347. (Lu M Y, Xu X B, Meng L H, et al.2020. Gene knockout and preliminary functional analysis of CgFAE gene of Colletotrichum gloeosporioides in mango[J]. Molecular Plant Breeding, 18(22): 7342-7347.) [4] 武琼. 2013. 辣椒疫霉菌(Phytophthora capsica)阿魏酸酯酶基因克隆及其致病功能分析[D]. 硕士学位论文, 山东农业大学, 导师: 张修国, pp. 59-62. (Wu Q.2013. Cloning and pathogenic function analysis of feruloyl esterase genes from Phytophthora capsici[D]. Thesis for M.S., Shandong Agricultural University, Supervisor: Zhang X G, pp. 59-62.) [5] 武文月, 孙新康, 秦臻, 等. 2021. 小麦叶锈菌生理小种PHNT候选效应蛋白的筛选及分析[J]. 农业生物技术学报, 29(08): 1463-1472. (Wu W Y, Sun X K, Qin Z, et al.2021. Screening and analysis of effector candidates in physiological race PHNT of Puccinia triticina on wheat (Triticum aestivum)[J]. Journal of Agricultural Biotechnology, 29(08): 1463-1472.) [6] 张晨露, 贾文敬, 舒正玉. 2023. 阿魏酸酯酶的研究进展[J]. 生物化工, 9(1): 192-198. (Zhang C L, Jia W J, Shu Z Y.2023. Research progress of ferulic acid esterases[J]. Biological Chemical Engineering, 9(1): 192-198.) [7] 张子辉. 靳晶豪. 陈孝仁. 2021. 真菌富含半胱氨酸小分子量泌出蛋白的研究进展[J]. 农业生物技术学报, 29(4): 799-812. (Zhang Z H, Jin J H, Chen X R.2021. The research progress on fungal small cysteine-rich secretory proteins[J]. Journal of Agricultural Biotechnology, 29(4): 799-812.) [8] Abbas A, Mubeen M, Sohail M, et al.2022. Root rot a silent alfalfa killer in China: Distribution, fungal, and oomycete pathogens, impact of climatic factors and its management[J]. Frontiers in Microbiology, 13: 961794. [9] Bacete L, Melida H, Miedes E, et al.2018. Plant cell wall-mediated immunity: Cell wall changes trigger disease resistance responses[J]. The Plant Journal, 93(4): 614-636. [10] Balcerzak M, Harris L J, Subramaniam R, et al.2012. The feruloyl esterase gene family of Fusarium graminearum is differentially regulated by aromatic compounds and hosts[J]. Fungal Biology, 116(4): 478-488. [11] Chen S, Songkumarn P, Venu R C, et al.2013. Identification and characterization of in planta-expressed secreted effector proteins from Magnaporthe oryzae that induce cell death in rice[J]. Molecular Plant-Microbe Interactions, 26(2): 191-202. [12] Crepin V F, Faulds C B, Connerton I F.2004. Functional classification of the microbial feruloyl esterases[J]. Applied Microbiology and Biotechnology, 63(6): 647-652. [13] Dilokpimol A, Makela M R, Aguilar-pontes M V, et al.2016. Diversity of fungal feruloyl esterases: Updated phylogenetic classification, properties, and industrial applications[J]. Biotechnology for Biofuels, 9: 231. [14] Dimarogona M, Topakas E, Christakopoulos P, et al.2020. The crystal structure of a Fusarium oxysporum feruloyl esterase that belongs to the tannase family[J]. FEBS Letters, 594(11): 1738-1749. [15] Ferrara M, Haidukowski M, Logrieco A F, et al.2019. A CRISPR-Cas9 system for genome editing of Fusarium proliferatum[J]. Scientific Reports, 9(1): 19836. [16] Guo X, Liu N, Zhang Y, et al.2022. Pathogen-associated molecular pattern active sites of GH45 endoglucanohydrolase from Rhizoctonia solani[J]. Phytopathology, 112(2): 355-363. [17] Kikot G E, Hours R A, Alconada T M.2009. Contribution of cell wall degrading enzymes to pathogenesis of Fusarium graminearum: A review[J]. Journal of Basic Microbiology, 49(3): 231-241. [18] Kubicek C P, Starr T L, Glass N L.2014. Plant cell wall-degrading enzymes and their secretion in plant-pathogenic fungi[J]. Annual Review of Phytopathology, 52: 427-451. [19] Liu L, Wang Z, Li J, et al.2021. Verticillium dahliae secreted protein Vd424Y is required for full virulence, targets the nucleus of plant cells, and induces cell death[J]. Molecular Plant Pathology, 22(9): 1109-1120. [20] Malinovsky F G, Fangel J U, Willats W G.2014. The role of the cell wall in plant immunity[J]. Frontiers in Plant Science, 5: 178-189. [21] Ma Z, Zhu L, Song T, et al.2017. A paralogous decoy protects Phytophthora sojae apoplastic effector PsXEG1 from a host inhibitor[J]. Science, 355(6326): 710-714. [22] Oliveira D M, Mota T R, Oliva B, et al.2019. Feruloyl esterases: Biocatalysts to overcome biomass recalcitrance and for the production of bioactive compounds[J]. Bioresource Technology, 278: 408-423. [23] Quoc N B, Chau N.2017. The role of cell wall degrading enzymes in pathogenesis of Magnaporthe oryzae[J]. Current Protein & Peptide Science, 18(10): 1019-1034. [24] Rast D M, Baumgartner D, Mayer C, et al.2003. Cell wall-associated enzymes in fungi[J]. Phytochemistry. 64(2): 339-366. [25] Schulz K, Nieter A, Scheu A K, et al.2018. A type D ferulic acid esterase from Streptomyces werraensis affects the volume of wheat dough pastries[J]. Applied Microbiology and Biotechnology, 102(3): 1269-1279. [26] Tanaka S, Kahmann R.2021. Cell wall-associated effectors of plant-colonizing fungi[J]. Mycologia, 113(2): 247-260. [27] Thaker A, Mehta K, Patkar R.2022. Feruloyl esterase Fae1 is required specifically for host colonisation by the rice-blast fungus Magnaporthe oryzae[J]. Current Genetics, 68(1): 97-113. [28] Wang L, Wang N, Yu J, et al.2023. Identification of pathogens causing alfalfa Fusarium root rot in Inner Mongolia, China[J]. Agronomy, 13(2): 456. [29] Wegner A, Casanova F, Loehrer M, et al.2022. Gene deletion and constitutive expression of the pectate lyase gene 1 (MoPL1) lead to diminished virulence of Magnaporthe oryzae[J]. Journal of Microbiology, 60(1): 79-88. [30] Wu Y, Xie L, Jiang Y, et al.2022. Prediction of effector proteins and their implications in pathogenicity of phytopathogenic filamentous fungi: A review[J]. International Journal of Biological Macromolecules, 206: 188-202. [31] Xie L, Wu Y, Wang Y, et al.2021. Fumonisin B1 induced aggressiveness and infection mechanism of Fusarium proliferatum on banana fruit[J]. Environmental Pollution, 288: 117793. [32] Xu M, Gao X, Chen J, et al.2018. The feruloyl esterase genes are required for full pathogenicity of the apple tree canker pathogen Valsa mali[J]. Molecular Plant Pathology, 19(6): 1353-1363. [33] Yang Y, Zhang Y, Li B, et al.2018. A Verticillium dahliae pectate lyase induces plant immune responses and contributes to virulence[J]. Frontiers in Plant Science, 9: 1271. [34] Yu X Q, Niu H Q, Liu C, et al.2024. PTI-ETI synergistic signal mechanisms in plant immunity[J]. Plant Biotechnology Journal, 22(8): 2113-2128.