|
|
Identification of Antagonistic Strain ZF520 Against Cowpea (Vigna unguiculata) Root Rot Disease and It's Biocontrol Effect |
SHI Bin*, ZHAO Zi-Xuan*, XIE Xue-Wen, SHI Yan-Xia, CHAI A-Li, FAN Teng-Fei, SUN Xian-Hua, LI Bao-Ju**, LI Lei** |
Institute of Vegetables and Flowers/State Key Laboratory of Vegetable Biobreeding, Chinese Academy of Agricultural Sciences, Beijing 100081, China |
|
|
Abstract Cowpea (Vigna unguiculata) root rot is primarily a soil-borne fungal disease caused by Fusarium solani. This disease is particularly prevalent during the seedling stage of cowpea and poses significant challenges for prevention and control, especially in Hainan. Currently, there are no effective microbial agents available for its management. In this study, a strain designated ZF520, exhibiting a notable inhibitory effect on F. solani, was isolated from cowpea rhizosphere soil. Through morphological observation, determination of physiological and biochemical characteristics, and multi-gene phylogenetic tree analysis, this strain was identified as Bacillus velezensis. Antibacterial spectrum analysis revealed that strain ZF520 demonstrated significant antagonistic effects against 6 pathogenic fungi (F. oxysporum, Ascochyta citrullina, Rhizoctonia solani, F. solani, Corynespora cassiicola, Botrytis cinerea). Pot test results indicated a considerable reduction in the disease index of root rot when plants were inoculated with ZF520, achieving a control efficacy of 71.82%. A ZF520 seed coating agent was developed for cowpea seeds. This agent achieves a control effect on cowpea root rot of 76.67% without compromising the emergence rate, outperforming 23% imidacloprid fludioxonil difenoconazole 23% imidacloprid fludioxonil difenoconazole suspension seed coating agent treatment. The effective viable bacterial count of the microbial seed coating agent, formulated using ZF520 fermentation broth, was 1.5×109 CFU/mL. The coated strain maintained a stable rhizospheric colonization level of approximately 2.3×105 CFU/g in cowpea seedlings, demonstrating potential for mitigating pathogenic infection risks during the early growth stage through probable antagonistic mechanisms. In conclusion, strain ZF520 exhibits promising biocontrol potential and application prospects for managing cowpea root rot.
|
Received: 25 December 2024
|
|
Corresponding Authors:
**lilei01@caas.cn; libaojuivf@163.com
|
About author:: * These authors contributed equally to this work |
|
|
|
[1] 陈玲, 向娟, 张河庆, 等. 2021. 成都平原豇豆根腐病菌的分离与鉴定[J]. 西南大学学报(自然科学版), 43(09): 21-29. (Chen L, Xiang J, Zhang H Q, et al.Isolation and identification of the pathogenic Fusarium spp. causing cowpea root rot in Chengdu plain[J]. Journal Press of Southwest University, 43(09): 21-29. [2] 杜春梅, 李海燕, 李晓明, 等. 2009. HND1生物种衣剂防治大豆胞囊线虫药效研究[J]. 大豆科学, (06): 184-187. (Du C M, Li H Y, Li X M, et al. Control effects of HND1 biological seed coating on soybean cyst nematode[J]. Soybean Science, (06): 184-187.) [3] 黄艺烁, 谢学文, 石延霞, 等. 2020. 多粘类芽胞杆菌ZF197对白菜茎基腐病防治效果[J]. 园艺学报, 47(06): 1059-1071. (Huang Y S, Xie X W, Shi Y X, et al.Biocontrol effect of Paenibacillus polymyxa strain ZF197 against base stem rot of Chinese cabbage[J]. Acta Horticulturae Sinica, 47(06): 1059-1071.) [4] 姜超, 董禹含, 孟利强, 等. 2024. 镰孢菌引发的大豆根腐病及其生物防治研究进展[J]. 大豆科学, 43(05): 656-662. (Jiang C, Dong Y H, Meng L Q, et al.2024. Research progress on soybean root rot caused by Fusarium and its biological control[J]. Soybean Science, 43(05): 656-662.) [5] 李风顺. 2021. 防治水稻恶苗病拮抗细菌的筛选及生物种衣剂的研发[D]. 硕士学位论文, 南京农业大学, 导师: 刘永锋, pp .13-23. (LI F S.2021. Screening of antagonistic bacteria for controlling rice bakanae disease and development of biological seed coating agent[D]. Thesis for M.S., Nanjing Agricultural University, Supervisor: Liu Y F, pp .13-23.) [6] 李小荣, 朱金文, 王连生, 等. 2005. 豇豆根腐病的发生与防治[J]. 植物保护, (06): 93-94. (Li X R, Zhu J W, Wang L S, et al. 2005. Occurrence and control of cowpea root rot disease[J]. Plant Protection, (06): 93-94.) [7] 任胜林, 梅慧玲, 李映萱, 等. 2020. 百合枯萎病病原菌的分离鉴定及其接种浓度对发病程度的影响[J]. 南京农业大学学报, 43(6): 1097-1106. (Ren S L, Mei H L, Li Y X, et al.Isolation and identification of lily Fusarium wilt pathogen and the effect of spore suspension concentration on the extent of disease[J]. Journal of Nanjing Agricultural University, 43(6): 1097-1106. [8] 田涛. 2004. 蜡样芽孢杆菌绿色荧光蛋白标记及其在小麦上定殖的初探[D]. 硕士学位论文, 中国农业大学, 导师: 王琦, pp .9-20. (Tian T.The construction of GFP-tagged Bacillus strains and the primary study of the colonization on the wheat[D]. Thesis for M.S., China Agricultural University, Supervisor: Wang Q, pp . 9-20.) [9] 王芳, 于璐, 齐泽铮, 等. 2024. 大豆镰刀菌根腐病拮抗菌的筛选及生防效果[J]. 生物技术通报, 40(07): 216-225. (Wang F, Yu L, Qi Z Z, et al.2024. Screening and biocontrol effect of antagonistic bacteria against soybean root rot[J]. Biotechnology Bulletin., 40(07): 216-225.) [10] 王梦蕊, 刘淑梅, 侯丽霞, 等. 2022. 番茄颈腐根腐病抗性鉴定技术的建立及抗性种质资源筛选[J]. 中国农业科学, 55(04): 707-718. (Wang M R, Liu S M, Hou L X, et al.2022. Development of artificial inoculation methodology for evaluation of resistance to Fusarium crown and root rot and screening of resistance sources in tomato[J]. Scientia Agricultura Sinica, 55(04): 707-718.) [11] 卫鑫辰, 王巧, 石彬, 等. 2024. 新洋葱伯克霍尔德氏菌YM12的分离鉴定及其对黄瓜软腐病的防治效果[J]. 中国生物防治学报, 40(05): 1088-1098. (Wei X C, Wang Q, Shi B, et al.2024. Isolation and identification of Burkholderia cenocepacia YM12 and its control effect on cucumber soft rot disease[J]. Chinese Journal of Biological Control, 40(05): 1088-1098.) [12] 向娟, 吴传秀, 杨靖, 等. 2018. 成都平原豇豆-水稻-大白菜高效轮作栽培技术规程[J]. 四川农业科技, (12): 52-54. (Xiang J, Wu C X, Yang J, et al. 2018. Cowpea-rice-Chinese cabbage efficient rotation cultivation technical regulations in Chengdu Plain[J]. Sichuan Agricultural Science and Technology, (12): 52-54.) [13] 谢海鹏, 林樱桃, 吴小燕, 等. 2023. 豇豆枯萎病生防细菌的筛选鉴定及抗病机理初探[J]. 热带作物学报, 44(06): 1224-1236. (Xie H P, Lin Y T, Wu X Y, et al.2023. Screening and identification of biocontrol bacteria of cowpea Fusarium wilt and preliminary exploration of disease resistance mechanism[J]. Chinese Journal of Tropical Crops, 44(06): 1224-1236.) [14] 许帅. 2023. 贝莱斯芽胞杆菌ZF2定点防治甜瓜枯萎病及其作用机理研究[D]. 博士学位论文, 中国农业科学院, 导师: 李宝聚, pp .53-63. (Xv S.2023. Study on the mechanism of controlling muskmelon Fusarium wilt by targeted application of Bacillus velezensis ZF2[D]. Thesis for Ph.D., Chinese Academy of Agricultural Sciences, Supervisor: Li B J, pp. 53-63.) [15] 鄢蓉, 周小云, 张军高, 等. 2024. 麦根腐平脐蠕孢引起新疆小麦根腐病的病原鉴定及其生物学特性分析[J]. 新疆农业科学, 61(05): 1209-1217. (Yan R, Zhou X Y, Zhang J G, et al.2024. Identification and biological characterization of the root rot pathogen of wheat in Xinjiang caused by Bipolaris sorokiniana[J]. Xinjiang Agricultural Sciences, 61(05): 1209-1217.) [16] 赵杰, 田琼金, 聂蔓茹, 等. 2023. 红芸豆根腐病拮抗内生细菌的筛选和鉴定[J]. 山西农业科学, 51(10): 1226-1232. (Zhao J, Tian Q J, Nie M R, et al.2023. Screening and identification of antagonistic endophytic bacteria against pathogen of red kidney bean root rot[J]. Journal of Shanxi Agricultural Sciences, 51(10): 1226-1232.) [17] Alleluya V K, Arias A A, Ribeiro B, et al.2023. Bacillus lipopeptide mediated biocontrol of peanut stem rot caused by Athelia rolfsii[J]. Frontiers in Plant Science, 2023, 14:1069971. [18] Bai X, Li Q, Zhang D, et al.2023. Bacillus velezensis strain HN-Q-8 induced resistance to alternaria solani and stimulated growth of potato plant[J]. Biology (Basel), 12(6): 856. [19] Cheffi M, Bouket A C, Alenezi F N, et al.2019. Olea europaea L. root endophyte Bacillus velezensis OEE1 counteracts oomycete and fungal harmful pathogens and harbours a large repertoire of secreted and volatile metabolites and beneficial functional genes[J]. Microorganisms, 7(9): 314. [20] Chen K, Tian Z H, He H, et al.2020. Bacillus species as potential biocontrol agents against citrus diseases[J]. Biological Control, 151: 104419. [21] Chowdhury S P, Hartmann A, Gao X, et al.2015. Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42-a review[J]. Front Microbiology, 6: 780. [22] Jürgen K, Patrick B, Ralf-Udo E, et al.2024. Screening criteria for microbial bioprotectants for seed coating to protect seeds and seedlings from diseases[J]. Biological Control, 190: 105450. [23] Wang S T, Liu Z Q, Zhao M T, et al.2022. Chitosan-wampee seed essential oil composite film combined with cold plasma for refrigerated storage with modified atmosphere packaging: A promising technology for quality preservation of golden pompano fillets[J]. International Journal of Biological Macromolecules,224: 266-1275. [24] Yan Y, W. Xu, Chen W, et al.2021. Complete genome sequence of Bacillus velezensis YYC, a bacterium isolated from the tomato rhizosphere[J].Archives Microbiology, 204(1): 44. |
|
|
|