|
|
Identification and Expression Analysis of NRT/NPF Gene Family in Phoebe bournei |
LI Yi-Bei, TONG Zai-Kang, HAN Shuang, WANG Li, HAN Xiao, ZHANG Yu-Ting, YANG Qi, HUANG Hua-Hong, ZHANG Jun-Hong* |
School of Forestry & Bio-technology, Zhejiang A&F University/State Key Laboratory of Subtropical Silviculture, Hangzhou 311300, China |
|
|
Abstract Nitrogen is one of the essential macronutrient for plants, thus nitrogen content in soil seriously affects plant growth and development. Nitrate as the most important source of nitrogen absorption for P. bournei and many other land plants, and the nitrate transporter/peptide transporter family (NRT/NPF) is involved in the nitrate uptake, transport and distribution. Therefore, the genome-wide identification and expression analysis of the NRT/NPF gene family are important for the studying of nitrogen uptake and utilization in P. bournei. In the present study, the genome-wide NRT/NPF genes of P. bournei were identified using NRT protein sequences of Arabidopsis thaliana and Hidden Markov Model (HMM) (PF00854, PF07690, PF16974), and 63 PbNRT/NPF members were identified, which were unevenly distributed on 11 chromosomes. The results showed that the molecular weights of PbNRT/NPF were 22.8~135.6 kD, isoelectric point were 5.44~9.41, encoding 205 to 1 235 aa. Most of the encoded proteins were basic proteins with 2~23 transmembrane domains, phylogenetic analysis revealed that 63 PbNRT/NPF genes could be divided into 3 subfamilies, of which 60 belonged to the NRT1/NPF subfamily, 2 to the NRT2 subfamily subfamily and 1 to the NRT3 subfamily. Collinearity analysis revealed that there were 9 tandem duplication events and 10 segmental duplication events in the PbNRT/NPF family. The transcriptome data and qRT-PCR analysis showed that PbNRT/NPF members were differentially expressed among 5 tissues of P. bournei, for example, PbNPF6.3 was significantly higher expressed in the root bark than that of other tissues. Furthermore, PbNRT/NPF members showed differential expression patterns under different low nitrogen treatments, e.g. the expression of PbNRT2.4 and PbNRT2.5 significantly increased under low nitrogen treatment. Overall, this study provides a basis for studying the functions of the PbNRT/NPF genes in nitrogen absorption, transport and utilization in P. bournei, and provides a theoretical basis for breeding and selection of low-nitrogen tolerant varieties in P. bournei.
|
Received: 27 May 2022
|
|
Corresponding Authors:
*zhangjunhong@zafu.edu.cn
|
|
|
|
[1] 冯素花. 2014. 茶树硝酸根转运蛋白NRT1.2、NRT1.5和NRT2.5基因的克隆与表达[D]. 硕士学位论文, 中国农业科学院, 导师: 成浩, pp. 41. (Feng S H.2014. Cloning and expressing of the nitrogen transporter gene NRT1.2, NRT1.5 and NRT2.5 in Tea Plant [D]. Thesis of M.S., Chinese Academy of Agricultural Sciences, Supervisor: Cheng H, pp. 41.) [2] 古力, 王丰青, 李明杰, 等. 2021.地黄NRT1家族基因的鉴定和表达特性分析[J]. 中国中药杂志, 46(11): 10. (Gu L, Wang F Q, Li M J, et al.2021. Identification and expression analysis of NRT1 family genes in Rehmannia glutinosa[J]. China Journal of Chinese Materia Medica, 46(11): 10.) [3] 韩双, 韩潇, 李翼贝, 等. 2022. 闽楠NF-Y基因家族鉴定及其响应干旱胁迫的表达分析[J]. 农业生物技术学报, 30(06): 1112-1127. (Han S, Han X, Li Y B, et al.2022. Identification of NF-Y gene family and expression analysis in response to drought stress in Phoebe bournei[J]. Journal of Agricultural Biotechnology, 30(06): 1112-1127.) [4] 李婧, 左欣欣, 赵培伶, 等. 2022. 茶树高亲和硝酸盐转运蛋白家族基因NRT2的鉴定与表达[J].应用与环境生物学报, 28(01): 50-56. (Li J, Zuo X X, Zhao P L, et al.2021. Identification and expression analysis of high-affinity nitrate transporter family genes NRT2 in Camellia sinensis[J]. Chinese Journal of Applied and Environmental Biology, 28(01): 50-56.) [5] 李彦华, 杨芸, 徐卫红, 等. 2018. 不同小白菜品种硝酸盐含量、氮代谢关键酶活性及NRT1表达和亚细胞定位[J].食品科学, 39(07): 78-84. (Li Y H, Yang Y, Xu W H, et al.2018. Nitrate content, activities of key enzymes for nitrogen metabolism, and expression and subcellular localization of NRT1 in different nitrate-enriched varieties of Pakchoi (Brassica chinensis L.)[J]. Food Science, 39(07): 78-84.) [6] 马嘉俊, 吴英华, 李璿, 等. 2021. 白菜NPF基因家族成员的鉴定及其生物信息学分析[J].河南农业科学, 50(09): 117-127. (Ma J J, Wu Y H, Li R, et al.2021. Identification and bioinformatics analysis of NPF gene family members in Chinese Cabbage (Brassica rapa subsp. pekinensis)[J]. Journal of Henan Agricultural Sciences, 50(09): 117-127.) [7] 孟森. 2016. 林木细根氮素吸收动态及氮转运蛋白基因表达[D]. 博士学位论文, 西北农林科技大学, 导师: 赵忠, pp. 79. (Meng S.2016. Nitrogen dynamic uptake and genetic expression of translocator of tree species in fine roots[D]. Thesis for Ph.D., Northwest Agricultural and forsetry University, Supervisor: Zhao Z, pp. 79.) [8] 王波, 马行, 刘莹莹, 等. 2014. NRT基因与氮素利用效率的研究进展[J]. 北方园艺, (20): 198-202. (Wang B, Ma X, Liu Y Y, et al. 2014. Research advance of NRT gene on nitrogen use efficiency[J]. Northen Horticulture, (20): 198-202.) [9] 许光龄, 王建伟, 陈玥, 等. 2022. 甘薯NRT基因家族成员鉴定及其在不同氮素条件下的表达模式分析[J]. 分子植物育种, 20(22): 7316-7331. (Xu G L, Wang J W, Chen Y, et al.2022. Identification of sweetpotato NRT gene family members and expression patterns analysis under different nitrogen conditions[J]. Molecular Plant Breeding, 20(22): 7316-7331.) [10] 张合琼, 张汉马, 梁永书, 等. 2016. 植物硝酸盐转运蛋白研究进展[J]. 植物生理学报, 52(02): 141-149. (Zhang H Q, Zhang H M, Liang Y S, et al.2016. Research progress of nitrate in plant transport mechanism[J]. Plant Physiology Journal, 52(02): 141-149.) [11] Bai H, Euring D, Volmer K, et al.2013. The nitrate transporter (NRT) gene family in poplar[J]. PLOS ONE, 8(8): e72126. [12] Bi Y M, Kant S, Clarke J, et al.2009. Increased nitrogen-use efficiency in transgenic rice plants over-expressing a nitrogen-responsive early nodulin gene identified from rice expression profiling[J]. Plant, Cell & Environment, 32(12): 1749-60. [13] Chai X F, Wang X N, Pi Y, et al.2022. MdNRT2.4 interacts with rhizosphere bacteria to enhance nitrate uptake in apple rootstocks[J]. Journal of Experimental Botany, 73(18): 6490-6504. [14] Chen C J, Chen H, Zhang Y, et al.2020. TBtools: An integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant, 13(8): 1194-1202. [15] Ge Y J, Liu Y J, Shen A H, et al.2015. Fengshui forests conserve genetic diversity: A case study of Phoebe bournei (Hemsl.) Yang in southern China[J]. Genetics and Molecular Research, 14(1): 1986-93. [16] Gojon A, Gabriel K, Francine P W, et al.2011. Nitrate transceptor(s) in plants[J]. Journal of Experimental Botany, 62(7): 2299-2308. [17] Gu C S, Zhang X X, Jiang J F, et al.2014. Chrysanthemum CmNAR2 interacts with CmNRT2 in the control of nitrate uptake[J]. Scientific Reports, 4: 5833. [18] Gutierrez R A.2012. Systems biology for enhanced plant nitrogen nutrition[J]. Science, 336(6089): 1673-1675. [19] Han X, Zhang J H, Han S, et al.2022. The chromosomescale genome of Phoebe bournei reveals contrasting fates of terpene synthase (TPS)-a and TPS-b subfamilies[J]. Plant Communications, (6): 26-42. [20] Ho C H, Lin S H, Hu H C, et al.2018. CHL1 functions as a nitrate sensor in plants[J]. Cell, 138(6): 1184-1194. [21] Huang N C, Liu K H, Lo H J, et al.1999. Cloning and functional characterization of an Arabidopsis nitrate transporter gene that encodes a constitutive component of low-affinity uptake[J]. The Plant Cell, 11(8): 1381-1392. [22] Kotur Z, Nenah M, Sunita R, et al.2012. Nitrate transport capacity of the Arabidopsis thaliana NRT2 family members and their interactions with AtNAR2.1[J]. New Phytologist, 194(3): 724-731. [23] Lezhneva L, Kiba T, Feria-Bourrellier A B, et al.2014. The Arabidopsis nitrate transporter NRT2.5 plays a role in nitrate acquisition and remobilization in nitrogen-starved plants[J]. The Plant Journal, 80: 230-241. [24] Lin Y, Chu S S, Xu X S, et al.2022. Identification of nitrogen starvation-responsive miRNAs to reveal the miRNA-mediated regulatory network in Betula luminifera[J]. Frontiers in Genetics, 957505. [25] Lina L, Kiba T, Feria A B, et al.2014. The Arabidopsis nitrate transporter NRT2.5 plays a role in nitrate acquisition and remobilization in nitrogen-starved plants[J]. The Plant Journal: For Cell and Molecular Biology, 80(2): 230-41. [26] Li W B, Wang Y, Okamoto M, et al.2007. Dissection of the AtNRT2.1: AtNRT2.2 inducible high-affinity nitrate transporter gene cluster[J]. Plant Physiology, 143(1): 425-433. [27] Li W M, Yan M K, Hu B Y, et al.2018. Characterization and the expression analysis of nitrate transporter (NRT) gene family in pineapple[J]. Tropical Plant Biology, 11(3): 177-191. [28] Liu Q, Chen X B, Wu K, et al.2015. Nitrogen signaling and use efficiency in plants: What's new?[J]. Current Opinion in Plant Biology, 27: 192-198. [29] Okamoto M, Vidmar J J, Glass A D M.2003. Regulation of NRT1 and NRT2 gene families of Arabidopsis thaliana: Responses to nitrate provision[J]. Plant & Cell Physiology, 44(3): 304-17. [30] Okamoto M, Anshuman K, Li W B, et al.2006. High-affinity nitrate transport in roots of Arabidopsis depends on expression of the NAR2-like gene AtNRT3.1[J]. Plant Physiology, 140(3): 1036-1046. [31] Robertson G P, Vitousek P M.2009. Nitrogen in agriculture: Balancing the cost of an essential resource[J]. Annual Review of Environment and Resources, 34(1): 97-125. [32] Tsay Y F, Schroeder J I, Feldmann K A, et al.1993. The herbicide sensitivity gene CHL1 of Arabidopsis encodes a nitrate-inducible nitrate transporter[J]. Cell, 72(5): 705-713. [33] Tong J, Walk T C, Han P, et al.2020. Genome-wide identification and analysis of high-affinity nitrate transporter 2 (NRT2) family genes in rapeseed (Brassica napus L.) and their responses to various stresses[J]. BMC Plant Biology, 20(1): 464. [34] Wang W, Hu B, Yuan D Y, et al.2018. Expression of the nitrate transporter gene OsNRT1.1A/OsNPF6.3 confers high yield and early maturation in rice[J]. The Plant Cell, 30(3): 638-651. [35] Wang X L, Cai X F, Xu C X, et al.2021. Identification and characterization of the NPF, NRT2 and NRT3 in spinach[J]. Plant Physiology and Biochemistry, 158: 297-307. [36] Wang Y Y, Hsu P K, Tsay Y F.2012. Uptake, allocation and signaling of nitrate[J]. Trends in Plant Science, 17(8): 458-467. [37] Xu G X, Guo C C, Shan H Y, et al.2012. Divergence of duplicate genes in exon-intron structure[J]. Proceedings of the National Academy of Sciences of the USA, 109(4): 1187-1192. [38] Yan M, Fan X R, Feng H M, et al.2011. Rice OsNAR2.1 interacts with OsNRT2.1, OsNRT2.2 and OsNRT2.3a nitrate transporters to provide uptake over high and low concentration ranges[J]. Plant, Cell & Environment, 34(8): 1360-72. [39] Yong Z, Kotur Z, Glass A.2010. Characterization of an intact two-component high-affinity nitrate transporter from Arabidopsis roots[J]. Plant Journal, 63(5): 739-748. [40] Zhang H, Li S, Shi M Y, et al.2020. Genome-wide systematic characterization of the NPF family genes and their transcriptional responses to multiple nutrient stresses in allotetraploid rapeseed[J]. International Journal of Molecular Sciences, 21(17): 5947. |
|
|
|