|
|
Cloning and Function Study of CaDDB1 Gene in Pepper (Capsicum annuum) |
SHAN Qing-Yun, YUAN Qiao-Ling, GUO Si-Si, XIONG Cheng, LIU Feng*, ZOU Xue-Xiao* |
Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education/Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410128, China |
|
|
Abstract Pepper (Capsicum annuum) is an annual or limited perennial herb of the Solanaceae and Capsicum genus. The damaged DNA binding protein 1 (DDB1) gene has been reported in tomato (Solanum lycopersicum), Arabidopsis thaliana and other model plants, but its function in pepper is still unclear. In this study, tomato DDB1 homologous gene was cloned from pepper and named CaDDB1 (GenBank No. XM_016701551). CaDDB1 gene silencing plants were obtained by using virus-induced gene silencing (VIGS) technique, and the biological functions of CaDDB1 were preliminarily identified through observing their phenotypes. The results showed that pepper plants were extremely significantly dwarfed after CaDDB1 gene silencing (P<0.01). Simultaneously, anthocyanin content in the 3rd to 6th true leaves were extremely significantly increased (P<0.01), indicated that CaDDB1 gene affected the growth and development of pepper and played a negative role in the regulation of anthocyanin synthesis. The results of this study provide some theoretical guidance for the growth and development regulation and variety improvement of pepper.
|
Received: 21 April 2022
|
Corresponding Authors:
*liufengrich@126.com; zouxuexiao428@163.com
|
|
|
|
[1] 季娜娜, 闵德栋, 邵淑君, 等 . 2016. VIGS 载体在蔬菜作物中的应用研究进展[J]. 植物生理学报, 52(06): 810-816. (Ji N N, Min D D, Shao S J, et al., 2016. Advances in the application of VIGS vectors in vegetable crops[J]. Plant Physiology Journal, 52(06): 810-816.) [2] 李杰, 罗江宏, 万子龙, 等 . 2021. VIGS 技术在辣椒基因功能研究中的应用进展[J]. 河南农业科学 , 50(06): 9-15. (Li J, Luo J H, Wan Z L, et al.2021. Application prog‐ ress of VIGS technique in gene function study of pepper[J]. Journal of Henan Agricultural Sciences, 50(6): 9-15.) [3] 刘恒, 王社英, 赵静, 等 . 2020. 辣椒新品种引进对比试验初报[J]. 农家参谋, 13: 63-68. (Liu H, Wang S Y, Zhao J, et al.2020. Preliminary report of comparative experi‐ ment on introduction of new pepper varieties[J]. Agri‐ cultural Staff, 13: 63-68.) [4] 罗晓莉, 牛向丽, 黄维藻, 等 . 2011. 水稻 DDB1 基因的表达特性及功能分析[J]. 应用与环境生物学报,17(01):1-5. (Luo X L, Niu X L, Huang W Z, et al.2011. Expression characteristics and functional analysis of DDB1 gene in rice[J]. Chinese Journal of Applied & Environmental Bi‐ ology, 17(01): 1-5.) [5] 宋静爽, 王静, 刘周斌, 等 . 2020. 辣椒苗期对低温胁迫的响应及耐冷评价体系的建立[J]. 分子植物育种, 18(22): 7537-7546. (Song J S, Wang J, Liu Z B, et al.2020. Re‐ sponse of pepper seedlings to low temperature stress and establishment of cold tolerance evaluation system[J]. Molecular Plant Breeding, 18(22): 7537-7546.) [6] 王立浩, 马艳青, 张宝玺 . 2019. 我国辣椒品种市场需求与育种趋势[J]. 中国蔬菜 , 8(1): 1-4. (Wang L H, Ma Y Q, Zhang B X.2019. Market demand and breeding trend of pepper varieties in China[J]. Chinese Vegetables, 8(1):1-4.) [7] 王亚茹, 姚允聪 . 2015. TRV-GFP 载体在麦秆菊上的应用[J]. 北京农学院学报 , 30(4): 33-37. (Wang Y R, Yao Y D.2015. Application of TRV-GFP vector in straw flow‐ er plants[J]. Journal of Beijing University of Agricul‐ ture, 30(4): 33-37.) [8] 吴叶天, 李德款,杨毅 . 2017. 拟南芥 AtDWD 与 DDB1 相互作用研究[J]. 四川大学学报( 自然科学版), 54(02): 411-416. (Wu Y T, Li D Q, Yang Y.2017. Interaction be‐ tween AtDWD and DDB1 in Arabidopsis thaliana[J]. Jour‐ nal of Sichuan University (Natural Science Edition), 54(02): 411-416.) [9] 邹学校, 马艳青, 戴雄泽,等 . 2020. 辣椒在中国的传播与产业发展[J]. 园艺学报 , 47(09): 1715-1726. (Zou X X, Ma Y Q, Dai X Z, et al.2020. Propagation and industri‐ al development of pepper in China[J]. Acta horticulturae sinica, 47(09): 1715-1726.) [10] 邹学校, 朱凡 . 2020. 辣椒传入中国的途径与传播路径[J]. 湖南农业大学学报(自然科学版), 46(06): 629-640. (Zou X X, Zhu F.2020. Introduction and transmission route of pepper into China[J]. Journal of Hunan Agricultural University (Natural Science Edition), 46(06): 629-640.) [11] Abramic M, Levine A, Protic M.1991. Purification of an ul‐ traviolet-inducible, damage-specific DNA-binding pro‐ tein from primate cells[J]. Journal of Biological Chemis‐ try, 266(33): 22493-22500. [12] Al Khateeb W M, Schroeder D F.2007. DDB2, DDB1A and DET1 exhibit complex interactions during Arabidopsis development[J]. Genetics, 176(1): 231-242. [13] Azari R, Reuveni M, Evenor D, et al.2010. Overexpression of UV-DAMAGED DNA BINDING PROTEIN 1 links plant development and phytonutrient accumulation in high pigment-1 tomato[J]. Journal of Experimental Bota‐ ny, 61(13): 3627-3637. [14] Azari R, Tadmor Y, Meir A, et al.2010. Light signaling genes and their manipulation towards modulation of phytonu‐ trient content in tomato fruits[J]. Biotechnology Advanc‐ es 28(1): 108-118. [15] Bennett E J, Rush J, Gygi S P, et al.2010. Dynamics of cullin- RING ubiquitin ligase network revealed by systematic quantitative proteomics[J]. Cell, 143(6): 951-965. [16] Bino R J, De Vos C R, Lieberman M, et al.2005. The light-hy‐ perresponsive high pigment-2dgmutation of tomato: Al‐ terations in the fruit metabolome[J]. New Phytologist, 166(2): 427-438. [17] Calvenzani V, Martinelli M, Lazzeri V, et al.2010. Response of wild-type and high pigment-1 tomato fruit to UV-B depletion: Flavonoid profiling and gene expression[J]. Planta, 231(3): 755-765. [18] Chen H, Huang X, Gusmaroli G, et al.2010. Arabidopsis CUL‐LIN4-damaged DNA binding protein 1 interacts with CONSTITUTIVELY PHOTOMORPHOGENIC1-SUP‐ PRESSOR OF PHYA complexes to regulate photomor‐ phogenesis and flowering time[J]. Plant Cell, 22(1): 108-123. [19] Chen H, Shen Y, Tan X, et al.2006. Arabidopsis CULLIN4 forms an E3 ubiquitin ligase with RBXI and the CDD complex in mediating lightcontrol of development[J]. The Plant Cell, 18(8): 1991-2004. [20] Ganpudi A L, Schroeder D F.2013. Genetic interactions of Arabidopsis thaliana damaged DNA binding protein 1B (DDB1B) with DDB1A, DET1, and COP1[J]. G3: Genes, Genomes, Genetics, 3(3): 493-503. [21] Giovannoni J, Nguyen C, Ampofo B, et al.2017. The epig‐ enome and transcriptional dynamics of fruit ripening[J]. Annual Review of Plant Biology, 68: 61-84. [22] He Y J, McCall C M, Hu J, et al.2006. DDB1 functions as a linker to recruit receptor WD40 proteins to CUL4- ROC1 ubiquitin ligases[J]. Genes & Development, 20(21): 2949-2954. [23] Higa L A, Wu M, Ye T, et al.2006. CUL4-DDB1 ubiquitin li‐ gase interacts with multiple WD40-repeat proteins and regulates histone methylation[J]. Nature Cell Biology, 8(11): 1277-1283. [24] Horvath C M.2004. Weapons of STAT destruction: Interferon evasion by paramyxovirus V proteins[J]. European Jour‐ nal of Biochemistry, 271(23-24): 4621-4628. [25] Hu J, McCall C M, Ohta T, et al.2004. Targeted ubiquitina‐ tion of CDT1 by the DDB1-CUL4A-ROC1 ligase in re‐ sponse to DNA damage[J]. Nature Cell Biology, 6(10): 1003-1009. [26] Ishibashi T, Kimura s, Yamamoto T, et al.2003. Rice UV-dam‐ aged DNA binding proteinhomologues are most abun‐ dant in proliferating tissues[J]. Gene, 308(1-2): 79-87. [27] Ishitani M, Xiong L, Lee H, et al.1998. HOS1, a genetic locus involved in cold-responsive gene expression in Arabidop-sis[J]. The Plant Cell, 10(7): 1151-1161. [28] Kapetanaki M G, Guerrero-Santoro J, Bisi D C, et al.2006. The DDB1-CUL4ADDB2 ubiquitin ligase is deficient in Xeroderma pigmentosum group E and targets histone H2A at UV-damaged DNA sites[J]. Proceedings of the National Academy of Sciences of the USA, 103(8): 2588-2593. [29] Keeney S, Chang G J, Linn S.1993. Characterization of a hu‐ man DNA damage binding protein implicated in Xero- derma pigmentosum E[J]. Journal of Biological Chemis‐ try, 268(28): 21293-21300. [30] Kilambi H V, Kumar R, Sharma R, et al.2013. Chromoplast- specific carotenoid-associated protein appears to be im‐ portant for enhanced accumulation of carotenoids in hp1 tomato fruits[J]. Plant Physiology, 161(4): 2085-2101. [31] Klee H J, Giovannoni J J.2011. Genetics and control of toma‐ to fruit ripening and quality attributes[J]. Annual Re‐ view of Genetics, 45(1): 41-59. [32] Levin I, Frankel P, Gilboa N, et al.2003. The tomato dark green mutation is a novel allele of the tomato homolog of the DEETIOLATED1 gene[J]. Theoretical and Ap‐plied Genetics 106(3): 454-460. [33] Liu J, Tang X, Gao L, et al.2012. A role of tomato UV-dam‐ aged DNA binding protein 1 (DDB1) in organ size con‐ trol via an epigenetic manner[J]. PLOS ONE, 7(8): e42621. [34] Liu Y, Roof S, Ye Z, et al.2004. Manipulation of light signal transduction as a means of modifying fruit nutritional quality in tomato[J]. Proceedings of the National Acade‐ my of Sciences of the USA, 101(26): 9897-9902. [35] Manning K, Tor M, Poole M, Hong, et al.2006. A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripen‐ ing[J]. Nature Genetics, 38(8): 948-952. [36] Mason T J, Bettenhausen H M, Chaparro J M, et al.2021. Evaluation of ambient mass spectrometry tools for as‐ sessing inherent postharvest pepper quality[J]. Horticul‐ ture Research, 8(1): 2252-2259. [37] Mustilli A C, Fenzi F, Ciliento R, et al.1999. Phenotype of the tomato high pigment-2 is caused by a mutation in the tomato homolog of DEETIOLATED1[J]. Plant Cell, 11(2): 145-157. [38] Nag A, Bondar T, Shiv S, et al.2001. The Xeroderma pigmen-tosum group E gene product DDB2 is a specif ic target of cullin 4A in mammalian cells[J]. Molecular and Cel‐ lular Biology, 21(20): 6738-6747. [39] Peters J L, van T A, Adamse P, et al.1989. High pigment mu‐ tants of tomato exhibit high sensitivity for phytochrome action[J]. Journal of Plant Physiology , 134(6): 661-666. [40] Rohrmann J, Tohge T, Alba R, et al.2011. Combined tran‐ scription factor profiling, microarray analysis and me‐ tabolite profiling reveals the transcriptional control of metabolic shifts occurring during tomato fruit develop‐ment[J]. The Plant Journal, 68(6): 999-1013. [41] Roodbarkelari F, Bramsiepe J, Weinl C, et al.2010. CUL‐LIN4-RING FINGER-LIGASE plays a key role in the control of endoreplication cycles in Arabidopsis tri‐chomes[J]. Proceedings of the National Academy of Sci‐ences of the USA, 107(34): 15275-15280. [42] Sapir M, Oren-Shamir M, Ovadia R, et al.2008. Molecular as‐ pects of anthocyanin fruit tomato in relation to high pig‐ ment-1[J]. Journal of Heredity, 99(3): 292-303. [43] Schroeder D F, Gahrtz M, Maxwell B B, et al.2002. De-etio‐lated 1 and damaged DNA binding protein 1 interact to regulate Arabidopsis photomorphogenesis[J]. Current Biol‐ ogy 12(17): 1462-1472. [44] Scrima A, Konickova R, Czyzewski B K, et al.2008. Structur‐al basis of UV DNA-damage recognition by the DDB1-DDB2 complex[J]. Cell, 135(7): 1213-1223. [45] Singh S K, Roy S, Choudhury S R, et al.2010. DNA repair and recombination in higher plants: Insights from com‐ parative genomics of Arabidopsis and rice[J]. BMC ge‐ nomics, 11(1): 1-12. [46] Tang X F, Liu J K, Huang S X, et al.2012. Roles of UV-dam‐ aged DNA binding protein 1 (DDB1) in epigenetically modifying multiple traits of agronomic importance in to‐ mato[J]. Plant Signaling & Behavior, 7(12): 1529-1532. [47] Vrebalov J, Ruezinsky D, Padmanabhan V, et al.2002. A MADS-box gene necessary for fruit ripening at the to‐ mato ripening-inhibitor (rin) locus[J]. Science, 296(5566): 343-346. [48] Wang A, Chen D, Ma Q, et al.2019. The tomato HIGH PIG‐ MENT1/DAMAGED DNA BINDING PROTEIN 1 gene contributes to regulation of fruit ripening[J]. Horti‐culture Research, 6(1): 15-25. [49] Wang S H, Liu J, Feng Y, et al.2008. Altered plastid levels and potential for improved fruit nutrient content by downregulation of the tomato DDB1-interacting protein CUL4[J]. The Plant Journal, 55(1): 89-103. [50] Wann E V, Jourdain E L, Pressey R, et al.1985. Effect of mu‐ tant genotypes hp ogcand dg ogcon tomato fruit quality[J]. Journal of the American Society for Horticultural Science, 110(2): 212-215. [51] Wertz I E, O' Rourke K M, Zhang Z, et al.2004. Human De- etiolated-1 regulates c-Jun by assembling a CUL4A ubiquitin ligase[J]. Science, 303(5662): 1371-1374. [52] Yen H, Shelton A, Howard L, et al.1997. The tomato high- pigment (hp) locus maps to chromosome 2 and influenc‐ es plastome copy number and fruit quality[J]. Theoreti‐ cal and Applied Genetics, 95(7): 1069-1079. |
|
|
|