|
|
Advances in Molecular Research of Starch-related Genes and Their Cis-regulatory Elements in Potato (Solanum tuberosum) |
TANG Ke1, YAN Cai-Hong1, ZHU Bo1,2, ZENG Zi-Xian1,2* |
1 College of Life Sciences, Sichuan Normal University, Chengdu 610101, China; 2 Plant Functional Genomics and Bioinformatics Research Center, Sichuan Normal University, Chengdu 610101, China |
|
|
Abstract Starch content and its metabolism in potato (Solanum tuberosum) tubers have great impact on starch processing. Deciphering the functions and expression regulation of key genes involving in starch metabolism will promote to improve potato starch content and quality through genetic engineering. In this review, recent advances on genes encoding key enzymes in potato starch metabolism and their application in starch improvement were summarised. In particular, the identification of cis-regulatory elements for the starch- related genes and their potential advantages in improving starch content and quality were discussed. The application of cis-regulatory elements in potato breeding may provide a new feasible strategy to create cultivars required for both food and energy alcohol industry.
|
Received: 20 June 2022
|
|
Corresponding Authors:
* zengzixian@sicnu.edu.cn
|
|
|
|
[1] 陈国梁, 张金文, 王蒂. 2008. 马铃薯 GBSS, SSⅡ 和 SSⅢ 基因片段的融合及其 RNAi 载体的构建[J]. 中国生物工程杂志, 28(8): 51-56. (Chen G L, Zhang J W, Wang D. 2008. Fusion of potato GBSS, SSⅡ and SSⅢ gene frag-ments and construction of RNA I vector[J]. China Bio-technology, 28(8): 51-56. ) [2] 成娟, 张金文, 王蒂. 2006. 低温条件下转 AcInv 反义基因马铃薯品系的干物质, 淀粉和还原糖含量变化[D]. 硕士学位论文, 内蒙古大学, 导师 :张若芳, pp: 25-30. (Chen J, Zhang J W, Wang D. 2006. Variations in dry material, starch and reducing sugar contents in transgen-ic potato (Solanum tuberosum L. ) tuber with antisense Ac-Inv gene at low temperature[D]. Thesis for M. S., Inner Mongolia University, Supervisor: Zhang R F, pp. 25-30. ) [3] 崔喜艳, 孙小杰, 刘忠野, 等. 2013. RNAi 机制及在植物中应用的研究概述[J]. 吉林农业大学学报, 35(2): 160-166. (Cui X Y, Sun X J, Liu Z Y, et al. 2013. A research review of RNA interference mechanisms and its applica-tions in plants[J]. Journal of Jilin Agricultural Universi-ty, 35(2): 160-166. ) [4] 侯娟. 2017. 马铃薯低温糖化相关淀粉酶基因的功能鉴定及机制解析[D]. 博士学位论文, 华中农业大学, 导师 :谢从华, pp: 89-99. (Hou J. 2017. Functional identification and mechanism analysis of amylase genes related to low temperature saccharification in potato[D]. Thesis for Ph. D., Huazhong Agricultural University, Supervisor: Xie C H, pp. 89-99. ) [5] 李淑洁, 张金文, 王煜, 等. 2005. 一个新的马铃薯 GBSS 基因 5'侧翼序列克隆及调控活性研究[J]. 中国马铃薯, 19(3): 129-133. (Li S J, Zhang J W, Wang Y, et al. 2005. Cloning and regulatory activity of a new 5' flanking se-quence of potato GBSS gene[J]. Chinese potato, 19(3): 129-133. ) [6] 连玲, 潘丽燕, 朱永生, 等. 2019. 杂交水稻骨干亲本 Wx 基因第一内含子+ 1 位碱基多态性分析[J]. 福建农业学报, 34(12): 1355-1363. (Lian L, PAN L Y, Zhu Y S, et al. 2019. Polymorphisms on first base of Wx gene intron 1 in parents of hybrid rice[J]. Fujian Journal of Agricul-tural Sciences, 34(12): 1355-1363. ) [7] 刘廷国, 李斌, 谢笔钧. 2006. 转 AGPase 基因马铃薯淀粉溶液行为及热特性比较研究[J]. 作物学报, 32(2): 310-312. (Liu T G, Li B, Xie B J. 2006. Comparative study on the behavior in solution and thermal character of starch in transgenic potato with AGPase[J]. Acta Agro-nomica Sinica, 32(2): 310-312. ) [8] 刘永强. 2014. 基于 RNAi 技术获得高含量支链淀粉且抗低温糖化的转基因马铃薯品种[D]. 硕士学位论文, 内蒙古大学, 导师:张若芳, pp: 25-30. (Liu Y Q. 2014. Trans-genic potato varieties with high content of amylopectin and resistance to low temperature saccharification were obtained based on RNAi technology[D]. Thesis for M. S., Inner Mongolia University, Supervisor: Zhang R F, PP. 25-30. ) [9] 刘玉汇, 王丽, 杨宏羽, 等. 2012. 马铃薯块茎颗粒结合型淀粉合酶基因的克隆及其 RNAi 载体的构建[J]. 作物学报, 38(7): 1187-1195. (Liu Y H, Wang L, Yang H Y, et al. 2012. Cloning of Granule-Bound Starch Synthase gene and construction of its RNAi vector in potato tuber[J]. Acta Agronomica Sinica, 38(7): 1187-1195. ) [10] 宋波涛, 谢从华, 柳俊. 2005. 马铃薯 sAGP 基因表达对块茎淀粉和还原糖含量的影响[J]. 中国农业科学, 38(7): 1439-1446. (Song B T, Xie C H, Liu J. 2005. Expression of potato sAGP gene and its effects on contents of starch and reducing sugar of transgenic potato tubers[J]. Scien-tia Agricultura Sinica, 38(7): 1439-1446. ) [11] 宋东光, 孙国枫, 单海燕, 等. 1998. 马铃薯 GBSS 基因 5′ 侧翼区调控作用的研究[J]. 植物学报 ( 英文版), 40(9): 796-802. (Song D G, Sun G F, Shan H Y, et al. 1998. Study on regulation of 5’flanking regions of Grable-Bound Starch Synthesis gene of potato[J]. Acta Botani-ca Sinica, 40(9): 796-802. ) [12] 孙博渊, 涂剑波, 李英, 等. 2014. 基因及其顺式调控元件在动物表型进化中的作用[J]. 遗传, 36(6): 525-535. (Sun B Y, Tu J B, Li Y, et al. 2014. Role of genes and their cis-regulatory elements during animal morphological evolution[J]. Hereditas, 36(6): 525-535. ) [13] 宿飞飞, 石瑛, 梁晶, 等. 2006. 不同马铃薯品种淀粉含量, 淀粉产量及淀粉组成的评价[J]. 中国马铃薯, 20(1): 16-18. (Su F F, Shi Y, Liang J, et al. 2006. Evaluation of starch content, starch yield and starch composition of different potato varieties[J]. Chinese Potato, 20(1): 16-18. ) [14] 张迟, 谢从华, 柳俊, 等. 2008. RNA 干涉对马铃薯内源酸性转化酶活性的影响[J]. 农业生物技术学报, 16(1): 108-113. (Zhang C, Xie C H, Liu J, et al. 2008. Effects of RNAi on regulation of endogenous acid invertase activi-ty in potato (Solanum tuberosum L. ) tubers[J]. Journal of Agricultural Biotechnology, 16(1): 108-113. ) [15] 张海艳, 董树亭, 高荣岐. 2006. 植物淀粉研究进展[J]. 中国粮油学报, 21(1): 41-46. (Zhang H Y, Dong S T, Gao R Q. 2006. Research progress of plant starch[J]. Chinese Journal of Cereals and Oils, 21(1): 41-46. ) [16] 张红, 郑世英, 梁淑霞, 等. 2019. 高淀粉加工专用型马铃薯育种研究进展[J]. 作物杂志, 35(1): 9-14. (Zhang H, Zheng S Y, Liang S X, et al. 2019. Research progress on potato breeding for high starch processing[J]. Crops, 35(1): 9-14. ) [17] Andersson M, Turesson H, Nicolia A, et al. 2017. Efficient tar-geted multiallelic mutagenesis in tetraploid potato (Sola-num tuberosum) by transient CRISPR-Cas9 expression in protoplasts[J]. Plant cell reports, 36(1): 117-128. [18] Andersson M, Turesson H, Olsson N, et al. 2018. Genome ed-iting in potato via CRISPR-Cas9 ribonucleoprotein de-livery[J]. Physiologia Plantarum, 164(4): 378-384. [19] Bhaskar P B, Wu L, Busse J S, et al. 2010. Suppression of the vacuolar invertase gene prevents cold-induced sweeten-ing in potato[J]. Plant Physiology, 154(2): 939-948. [20] Blennow A, Engelsen S B. 2010. Helix-breaking news: Fight-ing crystalline starch energy deposits in the cell[J]. Trends in plant science, 15(4): 236-240. [21] Brummell D A, Watson L M, Zhou J, et al. 2015. Overexpres-sion of STARCH BRANCHING ENZYME II increases short-chain branching of amylopectin and alters the physicochemical properties of starch from potato tuber[J]. BMC Biotechnology, 15: 28. [22] Carpenter M A, Joyce N I, Genet R A, et al. 2015. Starch phosphorylation in potato tubers is influenced by allelic variation in the genes encoding glucan water dikinase, starch branching enzymes I and II, and starch synthase III[J]. Frontiers in Plant Science, 6: 143. [23] Clasen B M, Stoddard T J, Luo S, et al. 2016. Improving cold storage and processing traits in potato through targeted gene knockout[J]. Plant Biotechnology Journal, 14(1):169-176. [24] Comino N, Cifuente J O, Marina A, et al. 2017. Mechanistic insights into the allosteric regulation of bacterial ADP-glucose pyrophosphorylases[J]. Journal of Biological Chemistry, 292(15): 6255-6268. [25] Crawford G E, Holt I E, Whittle J, et al. 2006. Genome-wide mapping of DNase hypersensitive sites using massively parallel signature sequencing (MPSS)[J]. Genome Re-search, 16(1): 123-131. [26] Ferreira S J, Senning M, Fischer-Stettler M, et al. 2017. Si-multaneous silencing of isoamylases ISA1, ISA2 and ISA3 by multi-target RNAi in potato tubers leads to de-creased starch content and an early sprouting phenotype[J]. PLoS One, 12(7): e0181444. [27] Heilersig H, Loonen A, Bergervoet M, et al. 2006. Post-tran-scriptional gene silencing of GBSSI in potato: Effects of size and sequence of the inverted repeats[J]. Plant Mo-lecular Biology, 60(5): 647-662. [28] Helle S, Bray F, Verbeke J, et al. 2018. Proteome analysis of potato starch reveals the presence of new starch metabol-ic proteins as well as multiple protease inhibitors[J]. Frontiers in Plant Science, 9: 746. [29] Huang X-F, Nazarian F, Vincken J-P, et al. 2017. A tandem CBM25 domain of α -amylase from Microbacterium au-rum as potential tool for targeting proteins to starch gran-ules during starch biosynthesis[J]. BMC biotechnology, 17(1): 1-8. [30] Kozlov S S, Blennow A, Krivandin A V, et al. 2007. Structural and thermodynamic properties of starches extracted from GBSS and GWD suppressed potato lines[J]. Inter-national Journal of Biological Macromolecules, 40(5): 449-460. [31] Kusano H, Ohnuma M, Mutsuro-Aoki H, et al. 2018. Estab-lishment of a modified CRISPR/Cas9 system with in-creased mutagenesis frequency using the translational enhancer dMac3 and multiple guide RNAs in potato[J]. Scientific Reports, 8(1): 13753. [32] Kusano H, Onodera H, Kihira M, et al. 2016. A simple Gate-way-assisted construction system of TALEN genes for plant genome editing[J]. Scientific Reports, 6(1): 1-7. [33] Lai Y C, Wang S Y, Gao H Y, et al. 2016. Physicochemical properties of starches and expression and activity of starch biosynthesis-related genes in sweet potatoes[J]. Food Chemistry, 199: 556-564. [34] Liu L, Gallagher J, Arevalo E D, et al. 2021. Enhancing grain-yield-related traits by CRISPR-Cas9 promoter editing of [35] maize CLE genes[J]. Nature Plants, 7(3): 287-294. [36] Lorberth R, Ritte G, Willmitzer L, et al. 1998. Inhibition of a starch-granule -bound protein leads to modified starch and repression of cold sweetening[J]. Nature Biotechnol-ogy, 16(5): 473-477. [37] Lu Z, Hofmeister B T, Vollmers C, et al. 2017. Combining ATAC-seq with nuclei sorting for discovery of cis-regu-latory regions in plant genomes[J]. Nucleic Acids Re-search, 45(6): e41-e41. [38] Lucht J M. 2015. Public acceptance of plant biotechnology and GM crops[J]. Viruses, 7(8): 4254-4281. [39] Miao H, Sun P, Liu Q, et al. 2017. Soluble starch synthase III-1 in amylopectin metabolism of banana fruit: Character-ization, expression, enzyme activity, and functional anal-yses[J]. Frontiers in Plant Science, 8: 454. [40] Nakata P A, Okita T W. 1996. Cis-elements important for the expression of the ADP-glucose pyrophosphorylase small-subunit are located both upstream and down-stream from its structural gene[J]. Molecular and Gener-al Genetics, 250(5): 581-592. [41] Orzechowski S, Sitnicka D, Grabowska A, et al. 2021. Effect of short-term cold treatment on carbohydrate metabo-lism in potato leaves[J]. International Journal of Molecu-lar Sciences, 22(13): 7203. [42] Orzechowski S. 2008. Starch metabolism in leaves[J]. Acta Biochimica Polonica, 55(3): 435-445. [43] Ou Y, Song B, Liu X, et al. 2013. Promoter regions of potato vacuolar invertase gene in response to sugars and hor-mones[J]. Plant Physiology and Biochemistry, 69: 9-16. [44] Panpetch P, Field R A, Limpaseni T. 2018. Heterologous co-expression in E. coli of isoamylase genes from cassava Manihot esculenta Crantz 'KU50' achieves enzyme-active heteromeric complex formation[J]. Plant Molecular Biol-ogy, 96(4-5): 417-427. [45] Rodríguez-Leal D, Lemmon Z H, Man J, et al. 2017. Engineer-ing quantitative trait variation for crop improvement by genome editing[J]. Cell, 171(2): 470-480. [46] Samodien E, Jewell J F, Loedolff B, et al. 2018. Repression of Sex4 and like Sex Four2 orthologs in potato increases tu-ber starch bound phosphate with concomitant alterations in starch physical properties[J]. Frontiers in Plant Sci-ence, 9: 1044. [47] Sevestre F, Facon M, Wattebled F, et al. 2020. Facilitating gene editing in potato: A single-nucleotide polymor-phism (SNP) map of the Solanum tuberosum L. cv. De-siree genome[J]. Scientific Reports, 10(1): 2045. [48] Silver D M, Kötting O, Moorhead G B. 2014. Phosphoglucan phosphatase function sheds light on starch degradation[J]. Trends in Plant Science, 19(7): 471-478. [49] Smith A M, Denyer K, Martin C. 1997. The synthesis of the starch granule[J]. Annual Review of Plant Biology, 48(1): 67-87. [50] Stark D M, Timmerman K P, Barry G F, et al. 1992. Regula-tion of the amount of starch in plant tissues by ADP glu-cose pyrophosphorylase[J]. Science, 258(5080): 287-292. [51] Van Harsselaar J K, Lorenz J, Senning M, et al. 2017. Genome-wide analysis of starch metabolism genes in potato (Sola-num tuberosum L. )[J]. BMC Genomics, 18(1): 1-18. [52] Vasil V, Clancy M, Ferl R J, et al. 1989. Increased gene ex-pression by the first intron of maize shrunken-1 locus in grass species[J]. Plant Physiology, 91(4): 1575-1579. [53] Volpe T A, Kidner C, Hall I M, et al. 2002. Regulation of het-erochromatic silencing and histone H3 lysine-9 methyla-tion by RNAi[J]. Science, 297(5588): 1833-1837. [54] Wang W, Hostettler C E, Damberger F F, et al. 2018. Modifi-cation of cassava root starch phosphorylation enhances starch functional properties[J]. Frontiers in Plant Sci-ence, 9: 1562. [55] Wittkopp P J, Kalay G. 2012. Cis-regulatory elements: Molec-ular mechanisms and evolutionary processes underlying divergence[J]. Nature Reviews Genetics, 13(1): 59-69. [56] Yang Y, Lee J H, Poindexter M R, et al. 2021. Rational design and testing of abiotic stress -inducible synthetic promot-ers from poplar cis -regulatory elements[J]. Plant Bio-technology Journal, 19(7): 1354-1369. [57] Zeeman S C, Kossmann J, Smith A M. 2010. Starch: Its me-tabolism, evolution, and biotechnological modification in plants[J]. Annual Review of Plant Biology, 61: 209-234. [58] Zeng Z, Zhang W, Marand A P, et al. 2019. Cold stress induc-es enhanced chromatin accessibility and bivalent histone modifications H3K4me3 and H3K27me3 of active genes in potato[J]. Genome Biology, 20(1): 1-17. [59] Zhang B, Zhou W, Qiao D, et al. 2019. Changes in nanoscale chain assembly in sweet potato starch lamellae by down-regulation of biosynthesis enzymes[J]. Journal of Agri-cultural and Food Chemistry, 67(22): 6302-6312. [60] Zhang W, Wu Y, Schnable J C, et al. 2012. High-resolution mapping of open chromatin in the rice genome[J]. Ge-nome Research, 22(1): 151-162. [61] Zhao X, Jayarathna S, Turesson H, et al. 2021. Amylose starch with no detectable branching developed through DNA-free CRISPR-Cas9 mediated mutagenesis of two starch branching enzymes in potato[J]. Scientific Re-ports, 11(1): 4311. [62] Zhu B, Zhang W, Zhang T, et al. 2015. Genome-wide predic-tion and validation of intergenic enhancers in Arabidop-sis using open chromatin signatures[J]. The Plant Cell, 27(9): 2415-2426. [63] Zhu X, Gong H, He Q, et al. 2016. Silencing of vacuolar in-vertase and asparagine synthetase genes and its impact on acrylamide formation of fried potato products[J]. Plant Biotechnology Journal, 14(2): 709-718. [64] Zhu X, Richael C, Chamberlain P, et al. 2014. Vacuolar inver-tase gene silencing in potato (Solanum tuberosum L. ) im-proves processing quality by decreasing the frequency of sugar-end defects[J]. PLoS One, 9(4): e93381. |
|
|
|