|
|
Bioinformatics and Expression Characteristic Analysis of Zinc Transporter StZnT2 Gene of Potato (Solanum tuberosum) |
YIN Ke1,2, ZHAO Jing3, TANG Xun1,2, ZHAO Gui-Bin4, ZHU Yong-Yong4, DANG Wei-Ying1, ZHANG Ning1,2,*, SI Huai-Jun1,2 |
1 College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; 2 Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China; 3 Gansu Agricultural Information Center, Lanzhou 730030, China; 4 Gansu General Station of Agro-technology Extension, Lanzhou 730020, China |
|
|
Abstract Zinc is a trace element necessary for plant growth and development. The lacking or presence of excessive zinc have severe impacts on growth of plants. Zinc transporter plays an important role in regulating zinc homeostasis in plants. In this study, the potato (Solanum tuberosum) zinc transporter gene StZnT2 (GenBank No. Xm_006358632.2) was cloned from the in vitro seedlings of potato cultivar 'Atlantic'. The results showed that the gene was 1 294 bp in length and 1 011 bp in CDS region, encoding 336 amino acids. Protein molecular weight was 36 682.78 kD. Theoretical isoelectric point was 5.63. StZnT2 was a hydrophobic transmembrane protein with a typical ZIP conserved domain. StZnT2 was located on the cell membrane. Comparative analysis of homologous proteins showed that the proteins encoded by StZnT2 gene were most similar to S. pennellii, S. lycopersicum and S. commersonii. Potato plants were stunted and root elongation was inhibited under zinc deficiency and zinc toxicity. The expression of genes under different zinc concentration gradient stress were analyzed by qPCR. The results showed that the expression level of StZnT2 was up-regulated under zinc deficiency and excessive zinc stress, and the expression level was the highest in roots. These results provide theoretical basis for further elucidating the function of StZnT2 gene in potato.
|
Received: 15 October 2021
|
|
Corresponding Authors:
*ningzh@gsau.edu.cn
|
|
|
|
[1] 杜平, 赵竹青, 宋波涛, 等. 2021. 马铃薯锌营养特性及锌生物强化技术研究进展[J]. 华中农业大学学报, 40(04): 36-43. (Du P, Zhao Z Q, Song B T, et al.2021. Advances on nutritional characteristics of zinc and zinc biofortification in potato[J]. Journal of Huazhong Agricultural University, 40(04): 36-43.) [2] 亢燕, 王耀辉, 李俊, 等. 2021. 羊草锌转运蛋白LcZNE1功能的鉴定[J]. 中国草地学报, 43(11): 1-9. (Kang Y, Wang Y H, Li J, et al.2021. Functional identification of zinc trandporter LcZNE1 in Leymus chinensis[J]. Chinese Journal of Grassland, 43(11): 1-9.) [3] 李成晨, 索海翠, 刘晓津, 等. 2019. 马铃薯锌生物强化研究进展[J]. 江苏农业科学, 47(20): 69-74. (Li C C, Suo H C, Liu X J, et al.2019. Research progress of zinc biofortification in potato[J]. Jiangsu Agricultural Sciences, 47(20): 69-74.) [4] 李广鑫. 2020. 不同小麦品种锌吸收累积特性及其作用机理[D]. 硕士学位论文, 河南农业大学, 导师: 赵鹏, 李畅. pp. 26-39. (Li G X.2020. Studies on mechanism of zinc uptake and accumulation in different wheat cultivars[D]. Thesis for M.S., Henan Agricultural University, Supervisor: Zhao P, Li C. pp. 26-39.) [5] 李素贞, 陈茹梅. 2018. ZIP蛋白在植物中的功能分析[J]. 生物技术通报, 34(11): 1-7. (Li S Z, Chen R M.2018. Function analysis of ZIP in plant[J]. Biotechnology Bulletin, 34(11): 1-7.) [6] 王芳芳, 杨江伟, 朱熙, 等. 2021. 马铃薯StERF109基因的生物信息学及表达分析[J]. 农业生物技术学报, 29(11): 2087-2098. (Wang F F, Yang J W, Zhu X, et al.2021. Bioinformatics and expression analysis of StERF109 gene in potato[J] Journal of Agricultural Biotechnology,29(11): 2087-2098.) [7] 武泰存, 房蓓, 王景安. 2005. 锌转运蛋白基因研究进展[J]. 西北植物学报, 25(10): 2139-2144. (Wu T C, Fang B, Wang J A.2005. Research advances about the genes of zinc-transporting proteins[J].Acta Botanica Boreali-Occidentalia Sinica, 25(10): 2139-2144.) [8] 张丽婷, 王志强, 马兴立, 等. 2014. 植物中锌转运蛋白的研究进展[J]. 贵州农业科学, 42(08): 55-60. (Zhang L T, Wang Z Q, Ma X L, et al.2014. Research progress of zinc transporter in plant[J]. GuiZhou Agricultural Sciences, 42(08): 55-60.) [9] Alloway B J.2009. Soil factors associated with zinc deficiency in crops and humans[J]. Environmental Geochemistry & Health, 31(5): 537-48. [10] Black R E, Victora C G, Walker S P, et al.2013. Maternal and child undernutrition and overweight in low-income and middle-income countries[J]. Lancet-London, 382(9890): 427-451. [11] Bashir K, Takahashi R, Akhtar S, et al.2013. The knockdown of OsVIT2 and MIT affects iron localization in rice seed[J]. Rice, 6(1): 31. [12] Dimkpa C O, Andrews J, Fugice J, et al.2020. Facile coating of urea with low-dose ZnO nanoparticles promotes wheat performance and enhances Zn uptake under drought stress[J]. Frontiers in Plant Science, 11: 168. [13] Durmaz E, Coruh C, Dinler G.2011. Expression and cellular localization of ZIP1 transporter under zinc deficiency in wild emmer wheat[J]. Plant Molecular Biology Reporter, 29(3): 582-596. [14] Du W, Yang J, Peng Q, et al.2019. Comparison study of zinc nanoparticles and zinc sulphate on wheat growth: From toxicity and zinc biofortification[J]. Chemosphere, 227(7): 109-116. [15] Elitt C M, Fahrni C J, Rosenberg P A.2019. Zinc homeostasis and zinc signaling in white matter development and injury[J]. Neuroscience Letters, 707: 134247. [16] Evens N P, Buchner P, Williams L E, et al.2017. The role of ZIP transporters and group F bZIP transcription factors in the Zn-deficiency response of wheat (Triticum aestivum)[J]. The Plant Journal, 92(2): 291-304. [17] Foster M, Hancock D, Petocz P, et al.2011. Zinc transporter genes are coordinately expressed in men and women independently of dietary or plasma zinc[J]. Journal of Nutrition, 141(6): 1195-1201. [18] García-Gómez C, Obrador A, González D, et al.2017. Comparative effect of ZnONPs, ZnO bulk and ZnSO4 in the antioxidant defences of two plant species growing in two agricultural soils under greenhouse conditions[J]. Science of the Total Environment, 589: 11-24. [19] Grotz N, Fox T, Connolly E, et al.1998. Identification of a family of zinc transporter genes from Arabidopsis that respond to zinc deficiency[J]. Proceedings of the National Academy of Sciences of the USA, 95(12): 7220-7224. [20] Ho E, Dukovcic S, Hobson B, et al.2012. Zinc transporter expression in zebrafish (Danio rerio) during development[J]. Comparative Biochemistry & Physiology Toxicology & Pharmacology, 155(1): 26-32. [21] Huang L,Tepaamorndech S.2013. The SLC30 family of zinc transporters-a review of current understanding of their biological and pathophysiological roles[J]. Molecular Aspects of Medicine, 34(2-3): 548-560. [22] Hall J L, Williams L E.2003. Transition metal transporters in plants[J]. Journal of Experimental Botany, 54(393): 2601-2613. [23] Helston R M, Phillips S R, McKay J A, et al.2007. Zinc transporters in the mouse placenta show a coordinated regulatory response to changes in dietary zinc intake[J]. Placenta, 28(5-6): 437-444. [24] Impa S M, Johnson-Beebout S E.2012. Mitigating zinc deficiency and achieving high grain Zn in rice through integration of soil chemistry and plant physiology research[J]. Plant Soil, 361: 3e41. [25] Jayaraman A K, Jayaraman S.2011. Increased level of exogenous zinc induces cytotoxicity and up-regulates the expression of the ZnT-1 zinc transporter gene in pancreatic cancer cells[J]. Journal of Nutritional Biochemistry, 22(1): 79-88. [26] Krämer U, Talke I N, Hanikenne M.2007. Transition metal transport[J]. FEBS Letters, 581(12): 2263-2272. [27] Kim B E, Wang F, Dufner-Beattie J, et al.2004. Zn2+-stimulated endocytosis of the mZIP4 zinc transporter regulates its location at the plasma membrane[J]. Journal of Biological Chemistry, 279(6): 4523-4530. [28] Kabir A H, Akther M S, Skalicky M, et al.2021. Downregulation of Zn-transporters along with Fe and redox imbalance causes growth and photosynthetic disturbance in Zn-deficient tomato[J]. Scientific Reports, 11(1): 6040. [29] Kambe T, Yamaguchi-Iwai Y, Sasaki R, et al.2004. Overview of mammalian zinc transporters[J]. Cellular & Molecular Life Sciences, 61(1): 49-68. [30] Kambe T.2011. An overview of a wide range of functions of ZnT and Zip zinc transporters in the secretory pathway[J]. Bioscience Biotechnology Biochemistry, 75(6): 1036-1043. [31] Lee S, Kim S A, Lee J, et al.2010. Zinc deficiency-inducible OsZIP8 encodes a plasma membrane-localized zinc transporter in rice[J]. Molecules & Cells, 29(6): 551-558. [32] Milner M J, Seamon J, Craft E, et al.2013. Transport properties of members of the ZIP family in plants and their role in Zn and Mn homeostasis[J]. Journal of Experimental Botany, 64(1): 369-381. [33] Moreau S, Thomson R M, Kaiser B N, et al.2002. GmZIP1 encodes a symbiosis-specific zinc transporter in soybean[J]. Journal of Biological Chemistry, 277(7): 4738-4746. [34] Pfaffl M W.2001. A new mathematical model for relative quantification in real-time RT-PCR[J]. Nucleic Acids Research, 29(9): e45. [35] Rizwan M, Ali S, Rehman M Z U, et al.2019. A critical review on the effects of zinc at toxic levels of cadmium in plants[J]. Environmental Science and Pollution Research, 26(7): 6279-6289. [36] Ricachenevsky F K, Menguer P K, Sperotto R A, et al.2015. Got to hide your Zn away: Molecular control of Zn accumulation and biotechnological applications[J]. Plant Science, 236: 1-17. [37] Saper R B, Rash R.2009. Zinc: An essential micronutrient[J]. American Family Physician, 79(9): 768-772. [38] Sekler I, Sensi S L, Hershfinkel M, et al.2007. Mechanism and regulation of cellular zinc transport[J]. Molecular Medicine, 13(7-8): 337-343. [39] Tang X, Zhang N, Si H J, et al.2017. Selection and validation of reference genes for RT-qPCR analysis in potato under abiotic stress[J]. Plant Methods, 13:85. [40] van der Zaal B J, Neuteboom L W, Pinas J E, et al.1999. Overexpression of a novel Arabidopsis gene related to putative zinc-transporter genes from animals can lead to enhanced zinc resistance and accumulation[J]. Plant Physiology, 119(3): 1047-1055. [41] Wang Y, Yang J, Miao R, et al.2021. A novel zinc transporter essential for V zinc and iron-dependent growth[J]. Journal of Plant Physiology, 256: 153296. [42] Welch R M, Graham R D.2004. Breeding for micronutrients in staple food crops from a human nutrition perspective[J]. Journal Experimental Botany, 55(396): 353-364. [43] Yang M, Li Y, Liu Z, et al.2020. A high activity zinc transporter OsZIP9 mediates zinc uptake in rice[J]. The Plant Journal, 103(5): 1695-1709. |
|
|
|