|
|
Effects of Co-expression of AtDXS and AtDXR on Terpene Metabolites in Tobacco (Nicotiana tabacum) |
ZHANG Han1, LENG Lu1, ZU Qing-Xue2, NIE Zhong-Yang2, LIN Song2, CHENG Zhi-Jun3, LI Guo-Ming1, LU Yin-Gang1,* |
1 College of Agriculture, Guizhou University, Huaxi 550025, China; 2 Kaiyang Branch of Guizhou Tobacco Company, Kaiyang 550300, China; 3 Hunan China Tobacco Industry Co., Ltd., Changsha 410014, China |
|
|
Abstract 1-deoxy-d-xylulose-5-phosphate synthase (DXS) and 1-deoxy-d-xylulose-5-phosphate reductoisomerase (DXR) are the first and second rate limiting enzyme of the synthesis pathway of terpene precursor 1-deoxy-d-xylulose-5-phosphate (DXP), and play important regulatory roles in the secondary metabolism of tobacco (Nicotiana tabacum). In this study, based on the DXS and DXR in Arabidopsis thaliana,the CaMV 35S promoter and NOS terminator, which are the most commonly used plant gene expression, were selected to synthesize the whole gene sequences DXS-NOS and 35S-DXR,and the co-expression vector pSH737-DXS-DXR was constructed. The tobacco transgenic plants co-expressing DXS and DXR were successfully obtained through Agrobacterium tumefacien-mediated genetic transformation. GUS chemical activity assay, PCR and Southern blot showed that the fusion genes had been successfully introduced into the genome of regenerated tobacco plants and expressed. RT-PCR showed that the DXS gene expression in transgenic plants was significantly higher than that of the control (P<0.05). The results of GC-MS showed that the neophytodiene and glandular hair secretion of transgenic plants increased in varying degrees compared with the control (P<0.05). This study provides research materials for tobacco breeding by using genetic improvement technology, and provides a reference basis for further regulating the biosynthesis of tobacco terpenoids by means of metabolic engineering.
|
Received: 20 October 2021
|
|
Corresponding Authors:
*agr.yglu@gzu.edu.cn
|
|
|
|
[1] 陈伟, 蒋卫, 邱雪柏, 等. 2011. 光质对烟叶光合特性、类胡萝卜素和表面提取物含量的影响[J]. 生态学报, 31(22): 6877-6885. (Chen W, Jiang W, Qiu X B, et al.2011. Effects of light quality on photosynthetic characteristics, carotenoid and surface extract content of tobacco leaves[J]. Journal of Ecology, 31(22): 6877-6885.) [2] 陈瑶, 谢琴鼎, 唐亚琴, 等. 2018. 植物萜类合成代谢途径及限速酶的研究进展[J]. 分子植物育种, 16(07): 2371-2379. (Chen Y, Xie Q D, Tang Y Q, et al.2018. Advances in synthetic metabolic pathways and rate-limiting enzymes of plant terpene[J]. Molecular Plant Breeding, 16(07): 2371-2379.) [3] 崔红, 宋志红. 2003. 类萜代谢工程研究进展及在烟草品种改良中的应用前景[J]. 中国烟草学报,(02): 36-39, 43.39, 43.) [4] 韩军丽, 李振秋, 刘本叶, 等. 2007. 植物萜类代谢工程[J]. 生物工程学报, (04): 561-569. (Han J L, Li Z Q, Liu B Y, et al. 2007. Plant terpene metabolic engineering[J]. Journal of Bioengineering, (04): 561-569.) [5] 侯丙凯, 夏光敏, 陈正华. 2001. 植物基因工程表达载体的改进和优化策略[J]. 遗传, (05): 492-497. (Hou B K, Xia G M, Chen Z H. 2001. Improvement and optimization strategy of plant genetic engineering expression vector[J]. Genetics, (05): 492-497.) [6] 黄兰, 徐迎波, 田振峰, 等. 2012. 气相色谱-质谱/选择离子监测法分析烟草中的重要香味物质[J]. 烟草科技, (01): 34-42. (Huang L, Xu Y B, Tian Z F, et al. 2012. Analysis of important aroma substances in tobacco by gas chromatography-mass spectrometry/selective ion monitoring[J]. Tobacco Science and Technology, (01): 34-42.) [7] 姜奇彦, 李丽丽, 牛风娟, 等. 2017. 过表达TaLEA1和TaLEA2基因提高转基因拟南芥的耐盐性[J]. 植物遗传资源学报, 18(03): 509-519. (Jiang Q Y, Li L L, Niu F J, et al.2017. Overexpression of TaLEA1 and TaLEA2 genes improves salt tolerance in transgenic Arabidopsis[J]. Journal of Plant Genetic Resources, 18(03): 509-519.) [8] 冷璐. 2015. 过量表达DXPS和DXR基因对烟草类萜代谢的影响研究[D]. 硕士学位论文, 贵州大学, 导师: 陆引罡, pp. 31-35. (Leng L.2015. Effects of overexpression of DXPS and DXR genes on terpene metabolism in tobacco study[D]. Thesis for M.S., Guizhou University, Supervisor: Lu Y G, pp. 31-35.) [9] 李尊强, 王春军, 杨爱国, 等. 2013. 烟草DXS基因的克隆及其亚细胞定位分析[J]. 安徽农业科学, 41(30): 11957-11960. (Li Z Q, Wang C J, Yang A G, et al.2013. Cloning and subcellular localization of tobacco DXS gene[J]. Anhui Agricultural Science, 41(30): 11957-11960.) [10] 李翠萍, 潘宇, 白小宁, 等. 2013. 拟南芥AtCAO和AtHEMA1基因共表达载体的构建及转烟草研究[J]. 中国生物工程杂志, 33(04): 54-60. (Li C P, Pan Y, Bai X N, et al.2013. Construction of co expression vector of AtCAO and AtHEMA1 genes in Arabidopsis and study on tobacco transformation[J]. Chinese Journal of Bioengineering, 33(04): 54-60.) [11] 刘继恺, 高永峰, 牛向丽, 等. 2009. 番茄HP1和HP2基因RNA共干涉载体的构建及遗传转化[J]. 应用与环境生物学报, 15(05): 591-595. (Liu J K, Gao Y F, Niu X L, et al.2009. Construction and genetic transformation of tomato HP1 and HP2 gene RNA co-interference vector[J]. Journal of Applied and Environmental Biology, 15(05): 591-595.) [12] 罗朝鹏, 李泽锋, 张剑锋, 等. 2018. 烟草NtDXS2基因的克隆及表达分析[J]. 烟草科技, 51(11): 1-7. (Luo C P, Li Z F, Zhang J F, et al.2018. Cloning and expression analysis of tobacco NtDXS2 gene[J]. Tobacco Science and Technology, 51(11): 1-7.) [13] 马蓉, 徐昊, 丁锐, 等. 2012. 大肠杆菌多基因共表达策略[J]. 中国生物工程杂志, 32(04): 117-122. (Ma R, Xu H, Ding R, et al.2012. Multi gene coexpression strategy of Escherichia coli[J]. Chinese Journal of Bioengineering, 32(04): 117-122.) [14] 马靓, 丁鹏, 杨广笑, 等. 2006. 植物类萜生物合成途径及关键酶的研究进展[J]. 生物技术通报, (S1): 22-30. (Ma L, Ding P, Yang G X, et al. 2006. Research progress on plant terpenoid biosynthesis pathway and key enzymes[J]. Biotechnology Bulletin, (S1): 22-30.) [15] 史宏志, 官春云. 1995. 烟草腺毛分泌物的化学成分及遗传[J]. 作物研究, (03): 46-49. (Shi H Z, Guan C Y. 1995. Chemical constituents and genetics of tobacco glandular hair secretion[J].Crop Research, (03): 46-49) [16] 申培林, 杨铁钊, 张小全, 等. 2012.烟草类萜生物合成途径中关键酶基因的克隆与表达调控[J]. 江苏农业科学, 40(01): 37-40. (Shen P L, Yang T Z, Zhang X Q, et al.2012. Cloning and expression regulation of key enzyme genes in tobacco terpene biosynthesis pathway[J]. Jiangsu Agricultural Science, 40(01): 37-40.) [17] 邵惠芳, 张慢慢, 刘国庆, 等. 2015. 木醋液对烤烟品质和抗病性的影响[J]. 中国农业科技导报, 17(06): 102-110. (Shao H F, Zhang M M, Liu G Q, et al.2015. Effects of wood vinegar on the quality and disease resistance of flue-cured tobacco[J]. China Agricultural Science and Technology Guide, 17(06): 102-110.) [18] 谭颖, 秦利军, 赵丹, 等. 2013. 共转化法获得HAK1基因高表达烟草提高植株钾吸收能力[J]. 植物生理学报, 49(07): 689-699. (Tan Y, Qin L J, Zhao D, et al.2013. High expression tobacco of HAK1 gene was obtained by co-transformation method to improve plant potassium absorption capacity[J]. Journal of Plant Physiology, 49(07): 689-699.) [19] 杨林, 汪逗逗, 田少凯, 等. 2021. 甘草DXS基因过表达及表达沉默对甘草酸生物合成的影响研究[J]. 药学学报, 56(07): 2025-2032. (Yang L, Wang D D, Tian S K, et al.2021. Effects of overexpression and silencing of DXS gene in licorice on glycyrrhizic acid biosynthesis[J]. Journal of Pharmacy, 56(07): 2025-2032.) [20] 翟琪麟, 安泽伟, 李雅超, 等. 2013. 一种植物双基因共表达载体的构建及应用[J]. 农业生物技术学报, 21(05): 612-620. (Zhai Q L, An Z W, Li Y C, et al.2013. Construction and application of a plant two gene co expression vector[J]. Journal of Agricultural Biotechnology, 21(05): 612-620.) [21] 占爱瑶, 由香玲, 詹亚光. 2010. 植物萜类化合物的生物合成及应用[J]. 生物技术通报, 21(01): 131-135. (Zhan A Y, You X L, Zhan Y G.2010. Biosynthesis and application of plant terpenoids[J]. Biotechnology Bulletin, 21(01): 131-135.) [22] Bach T J.1995. Some new aspects of isoprenoid biosynthesis in plants-A review[J]. Lipids, 30(3): 191-202. [23] Cordoba E, Porta H, Arroyo A, et al.2011. Functional characterization of the three genes encoding 1-deoxy-D-xylulose 5-phosphate synthase in maize[J]. Journalof Experimental Botany, 62(6): 2023-2038. [24] Carretero-Paulet L, Ahumada I, Cunillera N, et al.2002. Expression and molecular analysis of the Arabidopsis DXR gene encoding 1-deoxy-D-xylulose 5-phosphate reductoisomerase,the first committed enzyme of the 2-C-methyl-D-erythritol 4-phosphate pathway[J]. Plant Physiology, 129(4): 1581-1591. [25] Estévez J M, Cantero A, Reindl A, et al.2001. 1-Deoxy-D-xylulose-5-phosphate synthase, a limiting enzyme for plastidic isoprenoid biosynthesis in plants[J]. Journal of Biological Chemistry, 276(25): 22901-22909. [26] Eisenreich W, Bacher A, Arigoni D, et al.2004. Biosynthesis of isoprenoids via the non-mevalonate pathway[J]. Cellular and Molecular Life Science, 61(12): 1401-1426. [27] Jörg S, Claudia G, Hartmut K L.2001. Chlorophyta exclusively use the 1-deoxy-D-xylulose-5-phosphate/2-C-methylerythritol 4-phosphate pathway for the biosynthesis of isoprenoids[J]. Planta, 212(3): 416-423. [28] Jadaun J S, Sangwan N S, Narnoliya L K, et al.2017. Over-expression of DXS gene enhances terpenoidal secondary metabolite accumulation in rosescented geranium and Withania somnifera: Active involvement of plastid isoprenogenic pathway in their biosynthesis[J]. Physiologia Plantarum, 159(4): 381-400. [29] Johnson A W, Severson R F, Hudson J, et al.1985. Tobacco leaf trichomes and their exudates[J]. Tobacco Science, 29: 67-72. [30] Peebles C A M, Sander G W, Hughes E H, et al.2011. The expression of 1-deoxy-D-xy-lulose synthase and geraniol-10-hydroxylase or anthranilate synthase increases terpenoid indole alkaloid accumulation in Catharanthus roseus hairyroots[J]. Metabolic Engineering, 13(2): 234-240. [31] Rodríguez-Concepción M, Ahumada I, Diez-Juez E, et al.2001. 1-deoxy-D-xylulose 5-phosphate reductoisomerase and plastid isoprenoid biosynthesis during tomato fruit ripening[J]. Plant Journal, 27(3): 213-222. [32] Sebastian C, Oriol G, Anne C G.2008. The social network of a cell: Recent advances in interactome mapping[J]. Biotechnology Annual Review, 14: 1-28. [33] Soheil S M, Rodney B C.2001. Metabolic engineering of essential oil yield and composition in mint by altering expression of deoxyxylulose phosphate reductoisomerase and menthofuran synthase[J]. Proceedings of the National Academy of Sciences of the USA, 98(15): 8915-8920. [34] Wang G D, Tian L, Aziz N, et al.2008. Terpene biosynthesis in glandular trichomes of hop[J]. Plant Physiology, 148(3): 1254-1266. |
|
|
|