|
|
Research Progress of Stigma Exsertion Traits in Tomato (Solanum lycopersicum) |
ZHAO Pan, SHEN Yuan-Bo, WANG Xin-Yu, WANG Jin, LI Yu-Shun, QI Shi-Ming, LIANG Yan* |
College of Horticulture, Northwest A&F University/Laboratory of Tomato Quality and Stress Tolerance Regulation Mechanism and Genetic Improvement, Yangling 712100, China |
|
|
Abstract The stigma exsertion is an important trait for the positional male-sterile types of tomato (Solanum lycopersicum), with a longer style than the stamens and it was also used in hybrid seed production without artificial emasculation with high seed purity, low seed production cost and easy sterility maintenance, which has been a hot spot in the use of tomato male sterility in recent years. The research progress of QTL or genes related to stigma exsertion in tomatoes was reviewed in this paper, and the application status of stigma exsertion in tomatoes was clarified, as well as the direction and countermeasures of future research and application, aiming to provide references and insights for accelerating breeding of male sterility traits in tomato.
|
Received: 17 September 2021
|
|
Corresponding Authors:
*liangyan@nwsuaf.edu.cn
|
|
|
|
[1] 陈玉辉, 许向阳, 李桂英, 等 . 2004. 番茄雄性不育研究进展[J]. 东北农业大学学报, 35(2): 129-134.
(Chen Y H, Xu X Y, Li G Y, et al.2004. Review of advance in research of the male sterility in tomato[J]. Journal of Northeast Agricultural University, 35(2): 129-134.)
[2] 马雅琳, 梁燕 . 2020. 番茄长花柱性状遗传规律与 QTL 分析[J]. 园艺学报 ,47(02): 65-75.
(Ma Y L, Liang Y, 2020. Inheritance and QTL analysis of long-style trait in toma‐ to[J]. Acta Horticulturae Sinica, 47(02): 264-274.)
[3] 王鸣 .1979. 番茄育种的理论与实践[M]. 大同 . 大同市南郊区蔬菜研究所 , pp. 92.(Wang M. 1979. Theory and Practice of Tomato Breeding[M]. Datong. Datong South Suburb Vegetable Research Institute, pp. 92.)
[4] 王燕 .2015. 高温诱导番茄柱头外露的生理及分子基础的研究[D]. 硕士学位论文 ,浙江大学 ,导师 :卢钢 . pp. 41-58 (Wang Y. 2015. Studies on the physiological and mo‐ lecular basis of stigma extertion in tomato under high temperature[D]. Thesis for M. S., Zhejiang University, Supervisor: Lu G. pp. 41-58.)
[5] 王燕, 潘长田, 王洁, 等 . 2015. 赤霉素对亚高温胁迫下番茄花柱外露及相关基因表达的影响[J]. 浙江大学学报 (农业与生命科学版), 41(4): 449-457.
(Wang Y, Pan C T, Wang Jet al.2015. Effects of gibberellin on tomato stigma extertion and hormone-related gene expression under moderate heat stress[J]. Journal of Zhejiang Uni‐ versity (Agriculture & Life Sciences), 41(4): 449-457.)
[6] 张贺, 李景富, 庄磊, 等 . 2012. 番茄新型雄性不育系创造及其制种应用初探[J]. 中国蔬菜, 6: 93-95, 108.(Zhang H, Li J F, Zhuang L. et al. 2012. Initial exploration about creation of new tomato male sterile line and its seed pro‐ duction technology[J]. China Vegetables, 6: 93-95, 108.)
[7] 张小全, 胡育玮, 武云杰, 等 . 2018. 作物柱头外露性状研究进展[J]. 植物生理学报, 54(07): 1172 -1178.(Zhang X Q, Hu Y W, Wu Y J. et al. 2018. Research progress of stigma exsertion traits in crops[J]. Plant Physiology Journal, 54(7): 1172-1178.)
[8] Atanassova B.1999. Functional male sterility (ps-2) in tomato (Lycopesicon esculentum Mill.) and its application in breeding and hybrid seed production[J]. Euphytica, 107(1): 13-21.
[9] Atanassova B.2000. Functional male sterility in tomato (Lycopersicon esculentum Mill.) and its application in hybrid seed production[J]. Acta Physiologiae Plantarum, 22(3):221-225.
[10] Bernacchi D, Tanksley S D.1997. An interspecific backcross of Lycopersicon esculentum X L. Hirsutum: Linkage anal‐ ysis and a QTL study of sexual compatibility factors and floral traits[J]. Genetics, 147(2): 861-877.
[11] Bian H, Xie Y, Guo F, et al.2012. Distinctive expression pat‐ terns and roles of the miRNA393/TIR1 homolog module in regulating flag leaf inclination and primary and crown root growth in rice (Oryza sativa)[J]. New Phytol‐ ogist, 196(1): 149-161.
[12] Boer D R, Freire-Rios A, Vandenberg W M, et al.2014. Structur‐ al basis for DNA binding specificity by the auxin-depen‐ dent ARF transcription factors[J]. Cell, 156(3): 577-589.
[13] Browse J.2009. The power of mutants for investigating jasmonate biosynthesis and signaling[J]. Phytochemistry,69(13-14): 1539-1546.
[14] Carrera E, Ruiz-Rivero O, Peres L E P, et al.2012. Character‐ ization of the procera tomato mutant shows novel func‐ tions of the SlDELLA protein in the control of flower morphology, cell division and expansion, and the Auxin- Signaling pathway during Fruit-Set and development[J]. Plant Physiology, 160(3): 1581-1596.
[15] Chen K Y, Cong B, Wing R, et al.2007. Changes in regula‐ tion of a transcription factor lead to autogamy in cultivated tomatoes[J]. Science, 318(5850): 643-645.
[16] Chen K, Tanksley S D.2004. High-resolution mapping and functional analysis of se2.1: A major stigma exsertion quantitative trait locus associated with the evolution from allogamy to autogamy in the genus Lycopersicon[J]. Genetics, 168(3): 1563-1573.
[17] Cheng M Z, Gong C, Zhang B, et al.2021. Morphological and anatomical characteristics of exserted stigma sterili‐ ty and the location and function of SlLst (Solanum lycop- ersicum Long styles) gene in tomato[J]. Theoretical and Applied Genetics, 134(2): 505-518.
[18] de Martinis D, Cotti G, Hekker S T L, et al.2002. Ethylene re‐ sponse to pollen tube growth in Nicotiana tabacum flow‐ ers[J]. Planta, 214(5): 806-812.
[19] Ding B, Li J, Gurung V, et al.2021. The leaf polarity factors SGS3 and YABBYs regulate style elongation through auxin signaling in Mimulus lewisii[J]. New Phytologist,232(5): 2191-2206.
[20] Enders T A, Strader L C.2015. Auxin activity: Past, present, and future[J]. American Journal of Botany, 102(2): 180-196.
[21] Feys B, Be Nedetti C E, Turner P.1994. Arabidopsis mutants selected for resistance to the phytotoxin coronatine are male sterile, insensitive to methyl jasmonate, and resistant to a bacterial pathogen[J]. The Plant Cell, 6(5): 751-759.
[22] Franco-Zorrilla J M, Lopez-Vidriero I, Carrasco J L, et al.2014. DNA-binding specificities of plant transcription factors and their potential to define target genes[J]. Pro‐ ceedings of the National Academy of Sciences of the USA, 111(6): 2367-2372.
[23] Fulton T M, Beck-Bunn T, Emmatty D, et al.1997. QTL anal‐ ysis of an advanced backcross of Lycopersicon peruvia- num to the cultivated tomato and comparisons with QTLs found in other wild species[J]. Theoretical and Applied Genetics, 95(5-6): 881-894.
[24] Georgiady M S, Whitkus R W, Lord E M.2002. Genetic anal‐ ysis of traits distinguishing outcrossing and self-pollinat‐ ing forms of currant tomato, Lycopersicon pimpinellifoli- um (Jusl.) Mill[J]. Genetics, 161(1): 333-344.
[25] Gorguet B, Eggink P M, Oca A J, et al.2008. Mapping and characterization of novel parthenocarpy QTLs in tomato[J]. Theoretical and Applied Genetics, 116(6): 755-767.
[26] Honma S, Bukovac M J.1966. Inheritance of gibberellin induced heterostyly in the tomato[J]. Euphytica, 15(3):362-364.
[27] Justyna W, Jian X, Daniela S, et al.2008. Polar PIN localization directs auxin flow in plants[J]. Science, 312(5775): 883.
[28] Kai W, Fu Y, Wang J, et al.2019. Functional analysis of SlNCED1 in pistil development and fruit set in tomato (Solanum lycopersicum L.)[J]. Scientific Reports, 9(1):16943.
[29] Katsir L, Schilmiller A L, Staswick P E, et al.2008. COI1 is a critical component of a receptor for jasmonate and the bacterial virulence factor coronatine[J]. Proceedings of the National Academy of Sciences of the USA, 105(19):7100-7105.
[30] Kazan K, Manners J M.2013. MYC2: The master in action[J]. Molecular Plant, 6(3): 686-703.
[31] Kazan, Kemal.2015. Diverse roles of jasmonates and ethyl‐ ene in abiotic stress tolerance[J]. Trends in Plant Sci‐ ence, 20(4): 219-229.
[32] Kepinski S, Leyser O.2005. The Fbox protein TIR1 is an auxin receptor[J]. Nature, 435(7041): 441-445.
[33] Leivar P, Quail P H.2011. PIFs: Pivotal components in a cellular signaling hub[J]. Trends in Plant Science, 16(1):19-28.
[34] Li L, Zhao Y, Mccaig B C, et al.2004. The tomato homolog of coronatine-insensitive1 is required for the maternal control of seed maturation, jasmonate-signaled defense responses, and glandular trichome development[J]. The Plant Cell, 16(1): 126-143.
[35] Liu N, Wu S, Van Houten J, et al.2014. Down-regulation of AUXIN RESPONSE FACTORS 6 and 8 by microRNA 167 leads to floral development defects and female ste‐ rility in tomato[J]. Journal of Experimental Botany, 65(9): 2507-2520.
[36] Livne S, Lor V S, Nir I, et al.2015. Uncovering DELLA-Inde‐ pendent gibberellin responses by characterizing new to‐ mato procera mutants[J]. The Plant Cell, 27(6): 1579-1594.
[37] Lu S, Li Q, Wei H, et al.2013. Ptr-miR397a is a negative reg‐ ulator of laccase genes affecting lignin content in Popu- lus trichocarpa[J]. Proceedings of the National Academy of Sciences of the USA, 110(26): 10848-10853.
[38] Martí C, Orzáez D, Ellul P, et al.2007. Silencing of DELLA in‐ duces facultative parthenocarpy in tomato fruits[J]. The Plant Journal, 52(5): 865-876.
[39] Niu Y, Zhao T, Xu X, et al.2017. Genome-wide identification and characterization of GRAS transcription factors in to‐ mato (Solanum lycopersicum)[J]. PeerJ, 5(11): e3955.
[40] Noir S, B Mer M, Takahashi N, et al.2013. Jasmonate con‐ trols leaf growth by repressing cell proliferation and the onset of endoreduplication while maintaining a potential Stand-By mode[J]. Plant Physiology, 161(4): 1930-1951.
[41] Paik I, Kathare P K, Kim J I, et al.2017. Expanding roles of PIFs in signal integration from multiple processes[J]. Molecular Plant, 10(8): 1035-1046.
[42] Pan C, Yang D, Zhao X, et al.2018. Tomato stigma exsertion induced by high temperature is associated with the jas‐ monate signalling pathway[J]. Plant Cell and Environ‐ ment, 42(4): 1205-1221.
[43] Pan C, Ye L, Zheng Y, et al.2017. Identification and expression profiling of microRNAs involved in the stigma exsertion under high-temperature stress in tomato[J]. BMC Genomics, 18(1): 843.
[44] Pattison R J, Catalá C.2012. Evaluating auxin distribution in tomato (Solanum lycopersicum) through an analysis of the PIN and AUX/LAX gene families[J]. The Plant Journal, 70(4): 585-98.
[45] Peet M M, Sato S, Gardner R G.1998. Comparing heat stress effects on male ‐ fertile and male ‐ sterile tomatoes[J]. Plant Cell and Environment, 21(2): 225-231.
[46] Poulios S, Vlachonasios K E.2018. Synergistic action of GCN5 and CLAVATA1 in the regulation of gynoecium development in Arabidopsis thaliana[J]. New Phytolo‐ gist, 220(2): 593-608.
[47] Reyesolalde J I, VM Zúñigamayo, Serwatowska J, et al.2017. The bHLH transcription factor SPATULA enables cytokinin signaling, and both activate auxin biosynthe‐ sis and transport genes at the medial domain of the gy‐ noecium[J]. PLOS Genetics, 13(4): e1006726.
[48] Riccini A, Picarella M E, De Angelis F, et al.2021. Bulk RNA-seq analysis to dissect the regulation of stigma po‐ sition in tomato[J]. Plant Molecular Biology, 105(3):263-285.
[49] Rick C M, Fobes J F, Holle M.1977. Genetic variation in ly‐ copersicon pimpinellifolium: Evidence of evolutionary change in mating systems[J]. Plant Systematics and Evo‐ lution, 127(2): 139-170.
[50] Rick C M, Kesicki E, Fobes J F, et al.1976. Genetic and bio‐ systematic studies on two new sibling species of Lycop- ersicon from interandean Perú[J]. Theoretical and Applied Genetics, 47(2): 55-68.
[51] Salehin M, Li B, Tang M, et al.2019. Auxin-sensitive Aux/ IAA proteins mediate drought tolerance in Arabidopsis by regulating glucosinolate levels[J]. Nature Communi‐ cations, 10(1): 4021.
[52] Sawhney V K, Polowick P L.1986. Temperature-induced modifications in the surface features of stamens of a to‐ mato mutant: An SEM study[J]. Protoplasma, 131(1):75-81.
[53] Schubert R, Dobritzsch S, Gruber C, et al.2019. Tomato MYB21 acts in ovules to mediate Jasmonate-Regulated fertility[J]. The Plant Cell, 31(5): 1043-1062.
[54] Scott J W, George W L.1980. Breeding and combining ability of heterostylous genotypes for hybrid seed production in Ly- copersicon esculentum Mill[J]. Euphytica, 29(1): 135-144.
[55] Shang L, Song J, Yu H, et al.2021. A mutation in a C2H2- type zinc finger transcription factor contributed to the transition towards self-pollination in cultivated tomato[J]. The Plant Cell, 33(10): 3293-3308.
[56] Singh S, Sawhney V K, Pearce D W.2010. Temperature ef‐ fects on endogenous indole-3-acetic acid levels in leaves and stamens of the normal and male sterile 'sta‐ menless-2′mutant of tomato (Lycopersicon esculentum Mill.)[J]. Plant Cell and Environment, 15(3): 373-377.
[57] Song S, Qi T, Huang H, et al.2013. Regulation of stamen de‐ velopment by coordinated actions of jasmonate, auxin, and gibberellin in Arabidopsis[J]. Molecular Plant, 6(4):1065-1073.
[58] Staniaszek M, Szajko K, Kozik E U, et al.2012. The novel ps and ps-2 specific markers for selection of functional male sterile tomato lines in breeding programs and hy‐ brids seed production[J]. The Journal of Agricultural Science, 4(10): 61.
[59] Varaud E, Brioudes F, Szécsi J, et al.2011. AUXIN RESPONSE FACTOR8 regulates Arabidopsis petal growth by interacting with the bHLH transcription factor BIG‐ PETALp[J]. The Plant Cell, 23(3): 973-983.
[60] Vosters S L, Jewell C P, Sherman N A, et al.2014. The timing of molecular and morphological changes underlying re‐ productive transitions in wild tomatoes (Solanum sect. Lycopersicon)[J]. Molecular Ecology, 23(8): 1965-1978.
[61] Wang J.2014. Regulation of flowering time by the miR156- mediated age pathway[J]. Journal of Experimental Bota‐ ny, 65(17): 4723-4730.
[62] Wasternack C, Hause B.2018. Jasmonates: Biosynthesis, per‐ ception, signal transduction and action in plant stress re‐ sponse, growth and development. An update to the 2007 review in Annals of Botany[J]. Annals of Botany, 111(6): 1021-1058.
[63] Xu J, Driedonks N, Rutten M, et al.2017. Mapping quantitative trait loci for heat tolerance of reproductive traits in tomato (Solanum lycopersicum)[J]. Molecular Breeding,37(5): 58.
[64] Yuan Z, Zhang D B, et al.2015. Roles of jasmonate signalling in plant inflorescence and flower development[J]. Cur‐ rent Opinion in Plant Biology, 27: 44-51.
[65] Zhang M, Zhang X, Guo L, et al.2019. Single-base resolution methylome of cotton cytoplasmic male sterility system reveals epigenomic changes in response to high-temper‐ ature stress during anther development[J]. Journal of Ex‐ perimental Botany, 71(3): 951-969.
[66] Zheng K, Wang Y, Na Z, et al.2017. Involvement of PACLOBUTRAZOL RESISTANCE6/KIDARI, an atypical bHLH transcription factor, in auxin responses in Arabi- dopsis[J]. Frontiers in Plant Science, 8: 1813. |
|
|
|