|
|
Plant MYC Transcription Factor: Structural Characteristics, Action Mechanism and Functional Regulation |
ZOU Wen-Hui, SU Ya-Chun, REN Yong-Juan, ZHANG Chang, ZANG Shou-Jian, ZHAO Zhen-Nan, CHEN Yan-Ling, QUE You-Xiong* |
Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University / Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China |
|
|
Abstract Myelocytomatosis (MYC) transcription factors (TFs) are the core regulators of jasmonic acid (JA) signal transduction pathway. They are involved in plant growth and development, secondary metabolite synthesis, stress response, plant hormone signal transduction and the interaction between them. In this paper, research progress of plant MYC TFs from the aspects of the characteristics of sequence, structure and function were reviewed, as well as their action mechanism in biotic and abiotic stresses. This review accumulates basic data for further exploring the functional role and regulation mode of MYC TFs in plants.
|
Received: 08 September 2021
|
|
Corresponding Authors:
* queyouxiong@126.com
|
|
|
|
[1] Taiz L, Zeiger E, Song C P, et al.2009. 植物生理学[M]. 科学出版社, 北京. pp. 292-318. (Taiz L, Zeiger E, Song C P, et al.2009. Plant Physiology[M]. Science Press.. Beijing. pp. 292-318.) [2] 陈金焕, 田玉如, 李艾佳, 等. 2020. 茉莉酸信号及其在木本植物中的研究进展[J]. 中国科学: 生命科学, 50(02): 215-226. (Chen J H, Tian Y R, Li A J, et al.2020. Jasmonic acid signaling and its research progress in woody plants[J]. Science China Life Sciences, 50(02): 215-226.) [3] 杜敏敏, 李景富, 王保, 等. 2014. SlMYC2转录因子对番茄伤害诱导抗性相关基因的调控研究[J]. 东北农业大学学报, 45(05): 31-37. (Du M M, Li J F, Wang B G, et al.2014. SlMYC2 is an important transcription factor for regulating the expression of wound-responsive genes in tomato (Solanum tuberosum)[J]. Journal of Northeast Agricultural University, 45(05): 31-37.) [4] 樊晓培. 2020. COI1/MYC2与冷响应基因ICE41调节冬小麦抗寒分子机制[D]. 硕士学位论文, 东北农业大学,导师: 张达. pp. 28-31. (Fan X P.2020. The molecular mechanism of COI1/MYC2 and cold response gene ICE41 in regulating winter wheat (Triticum aestivum) cold resistance[D]. Thesis for M.S., Northeast Agricultural University, Supervisor: Zhang D. pp. 28-31.) [5] 韩笑. 2015. 茉莉酸信号途径调控拟南芥子叶下表皮气孔发育的研究[D]. 硕士学位论文, 云南大学, 导师: 陈小兰, 余迪求. pp.33-47. (Han X.2015. Study of jasmonates signaling on stomatal development in the adaxial epidermis of Arabidopsis thaliana[D]. Thesis for M.S., Yunnan University, Supervisor: Chen X L, Yu D Q, pp. 33-47.) [6] 郝立冬, 郭海滨, 李明, 等. 2020. 玉米MYC基因家族的结构特点和表达模式分析[J]. 基因组学与应用生物学, 40(4):1748-1753. (Hao L D, Guo H B, Li M, et al.2020. Characteristics and expression pattern of maize (Zea mays) MYC gene family[J]. Genomics and Applied Biology, 40(4):1748-1753. ) [7] 黄艳岚, 刘仕芸, 张树珍, 等. 2009. 马铃薯花青素转录激活基因(stmyc)的克隆及表达分析[J]. 农业生物技术学报, 17(05): 941-942. (Huang Y L, Liu S Y, Zhang S Z, et al.2009. Cloning of the anthocyanin transcriptional activator gene (stmyc) of Solanum tuberosum and its expression analysis[J]. Journal of Agricultural Biotechnology, 17(05): 941-942.) [8] 荆叶醒. 2019. 小麦TaJAZ1基因的克隆及其调控小麦白粉病抗性机理的研究[D]. 硕士学位论文,中国农业科学院, 导师:孙加强, pp.25-37. (Jing Y X,2019. Cloning of wheat TaJAZ1 gene and its mechanism of controlling wheat powdery mildew resistance [D]. Thesis for M.S., Chinese Academy of Agricultural Sciences, Supervisor: Sun J Q, pp.25-37. ) [9] 李春琴, 段桂花, 马笑晴, 等. 2020. 外源茉莉酸对稻瘟病菌引起褐点型坏死斑的水稻防御响应的影响[J]. 南方农业学报, 51(05): 1053-1061. (Li C Q, Duan G H, Ma X Q, et al.2020. Effects of exogenous jasmonic acids on defense response of resistant rice during the formation of brown necrotic spots caused by Magnaporthe oryzae infection[J]. Journal of Southern Agriculture, 51(05): 1053-1061.) [10] 李罡. 2019. 大青杨MYC2转录因子调控不定根发育的机理研究[D]. 硕士毕业论文, 东北林业大学, 导师:李成浩. pp. 31-43. (Li G.2019. Study on the mechanism of MYC2 transcription factor in the regulation of adventitious root development in populus (Populus ussuriensis)[D]. Thesis for M.S., Northeast Forestry University, Supervisor: Li C H. pp. 31-43.) [11] 刘博欣. 2014. 抗逆转录因子基因的克隆、功能分析及筛选[D]. 硕士毕业论文, 西北大学, 导师: 尉亚辉, 吴燕民. pp. 24-45. (Liu B X.2014. Cloning and functional-selection analysis of several transcription factors gene[D]. Thesis for M.S., Northwest University, Supervisor: Wei Y H, Wu Y M. pp. 24-45.) [12] 刘璐, 孙蕾, 张志鹏, 等. 2016. 外源物质诱导对甜瓜枯萎病抗性和防御酶活性的影响[J]. 北方园艺,14): 122-126. (Liu L, Sun L, Zhang Z P, et al. 2016. Induction resistance and defense enzyme activity by extraneous factors to Fusarium oxysporum f. sp. Melonis in Melon[J]. Northern Horticulture, (14): 122-126.) [13] 刘玥, 陈守坤, 王成微, 等. 2019. 水稻MYB-MYC基因家族的全基因组鉴定、系统进化和表达模式分析[J]. 西北农业学报, 28(11): 1790-1800. (Liu Y, Chen S K, Wang C W, et al.2019. Genome-wide identification, phylogeny and expression analysisl of MYB-MYC transcription factors in rice (Oryza sativa L.)[J]. Acta Agriculturea Boreali-occidentalis Sinica, 28(11): 1790-1800.) [14] 庞茜. 2019. 玉米ZmMYC7基因的功能分析[D]. 硕士毕业论文, 河北农业大学, 导师: 董金皋, 邢继红, pp. 22-24. (Pang X.2019. Functional analysis of ZmMYC7 gene in maize (Zea mays)[D]. Thesis for M.S., Hebei Agricultural University, Supervisor: Dong J G, Xing J H, pp. 22-24.) [15] 王娇娇. 2008. 水稻CDPK家族基因结构、盐胁迫下的表达特性和重要基因遗传转化[D]. 硕士毕业论文, 河北农业大学, 导师: 肖凯, pp. 27-52. (Wang J J.2008. Characterization, expression analysis under salinity stress of calcium - dependent protein kinase genes in rice (Oryza sativa L) and genetic transformation of two putative important CDPK genes[D]. Thesis for M.S., Hebei Agricultural University, Supervisor: Xiao K, pp. 27-52.) [16] 蔚慧欣, 高利, 刘太国, 等. 2016. 外源茉莉酸甲酯诱导小麦抗条锈病的研究[J]. 植物病理学报, 46(02): 190-197. (Wei H X, Gao L, Liu T G, et al.2016. Preliminary study on resistance of wheat (Triticum aestivum) to stripe rust induced by methyl jasmonate[J]. Acta Phytopathologica Sinica, 46(02): 190-197.) [17] 谢鹏飞, 朱蕾, 冯玲, 等. 2020. 转录因子MYC2介导植物抗生物胁迫的研究进展[J]. 应用昆虫学报, 57(04): 781-787. (Xie P F, Zhu L, Feng L, et al.2020. Research progress in transcription factor MYC2 mediating plant resistance to biological stress[J]. Chinese Journal of Applied Entomology, 57(04): 781-787.) [18] 姚李祥. 2019. 丹东蒲公英TaMYC1基因克隆及表达分析[D]. 硕士毕业论文, 沈阳农业大学, 导师:宁伟. pp. 26-30. (Yao L X.2019.Cloning and expression analysis of TaMYC1 gene in Taraxacum antungense Kitag[D]. Thesis for M.S., Shenyang Agricultural University, Supervisor: Ning W, pp. 26-30.) [19] 姚攀锋, 吕兵兵, 李琪, 等. 2019. 苦荞转录因子基因FtMYC的克隆及其表达与花青素积累的相关性分析[J]. 四川农业大学学报, 37(01): 8-14. (Yao P F, Lv B B, Li Q, et al.2019.Cloning of transcription factor gene FtMYC and analyzing the correlation between its expression and anthocyanin accumulation[J]. Journal of Sichuan Agricultural University, 37(01): 8-14.) [20] 易文凯, 王佳, 杨辉, 等. 2012. 植物ABA受体及其介导的信号转导通路[J]. 植物学报, 47(05): 515-524. (Yi W K, Wang J, Yang H, et al.2012. Abscisic acid receptors: Abscisic acid signaling transduction pathway in plants[J]. Chinese Bulletin of Botany, 47(05): 515-524.) [21] 曾露桂, 罗倩, 吴宇瑶, 等. 2020. 烟草转录因子NtMYC2对激素及非生物因素胁迫的响应[J]. 河南农业大学学报, 54(03): 386-391. (Zeng L G, Luo Q, Wu Y Y, et al.2020.Response of tobacco (Nicotiana tabacum) transcription factor NtMYC2 to hormone and abiotic stress[J]. Journal of Henan Agricultural University, 54(03): 386-391.) [22] (http://kns.cnki.net/kcms/detail/46.1068.S.20210713.1615.007.html). (Zhang Z H, Tian S B, Yang X F, et al. 2021. Effects of Powdery mildew pathogen on physiological and biochemical indexes of different resistance to Lagenaria Siceraria[J/OL]. Molecular Plant Breeding, 1-11.) [23] Abe H, Urao T, Ito T, et al.2003. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling[J]. Plant Cell, 15(1): 63-78. [24] Agrawal G K, Jwa N S, Rakwal R.2000. A novel rice (Oryza sativa L.) acidic PR1 gene highly responsive to cut, phytohormones, and protein phosphatase inhibitors[J]. Biochemical & Biophysical Research Communications, 274(1): 157-165. [25] Aleman F, Yazaki J, Lee M, et al.2016. An ABA-increased interaction of the PYL6 ABA receptor with MYC2 transcription factor: A putative link of ABA and JA signaling[J]. Scientific Reports, 6(1): 28941. [26] Ali M S, Baek K.2020. Protective roles of cytosolic and plastidal proteasomes on abiotic stress and pathogen invasion[J]. Plants, 9(7): 832. [27] Andrés O, Sandra F, José M F,et al.2020. The JA-pathway MYC transcription factors regulate photomorphogenic responses by targeting HY5 gene expression[J]. The Plant Journal, 102(1): 138-152. [28] Boter M,Ruíz-Rivero O,Abdeen A,et al.2004. Conserved MYC transcription factors play a key role in jasmonate signaling both in tomato and Arabidopsis[J]. Genes & Development, 18(13): 1577-1591. [29] Bruno D, Ping X G, J S S, et al.2007. MYC2 differentially modulates diverse jasmonate-dependent functions in Arabidopsis[J]. The Plant Cell, 19(7): 2225-2245. [30] Campos M L, Kang J H, Howe G A, et al.2014. Jasmonate-triggered plant immunity[J]. Journal of Chemical Ecology, 40(7): 657-675. [31] Carretero-Paulet L, Galstyan A, Roig-Villanova Iet al.2010. Genome-wide classification and evolutionary analysis of the bHLH family of transcription factors in Arabidopsis, poplar, rice, moss, and algae[J]. Plant Physiology, 153(3): 1398-1412. [32] Chen S K, Zhao H Y, Luo T L, et al.2019. Characteristics and expression pattern of MYC genes in Triticum aestivum, Oryza sativa, and Brachypodium distachyon[J]. Plants, 8(8): 274. [33] Cheng Z W, Sun L, Qi T C, et al.2011. The bHLH transcription factor MYC3 interacts with the jasmonate ZIM-Domain proteins to mediate jasmonate response in Arabidopsis[J]. Molecular Plant, 4(2): 279-288. [34] Chini A, Monte I, Zamarreño A M, et al.2018. An OPR3-independent pathway uses 4,5-didehydrojasmonate for jasmonate synthesis[J]. Nature Chemical Biology, 14(2): 171-178. [35] Chinnusamy V, Zhu J K, Sunkar R.2010. Gene regulation during cold stress acclimation in plants[J]. Methods in Molecular Biology, 639: 39-55. [36] Cole M D, Cowling V H.2008. Transcription-independent functions of MYC: Regulation of translation and DNA replication[J]. Nature Reviews Molecular Cell Biology, 9(10): 810-815. [37] de Pater S, Pham K, Memelink J, et al.1997. RAP-1 is an Arabidopsis MYC-like R protein homologue, that binds to G-box sequence motifs[J]. Plant Molecular Biology, 34(1): 169-174. [38] Deng Y Q, Bao J, Yuan F, et al.2016. Exogenous hydrogen sulfide alleviates salt stress in wheat seedlings by decreasing Na+ content[J]. Plant Growth Regulation, 79(3): 391-399. [39] Ding X P, Hou X, Xie K B, et al.2009. Genome-wide identification of BURP domain-containing genes in rice reveals a gene family with diverse structures and responses to abiotic stresses[J]. Planta, 230(1): 149-163. [40] Du M M, Zhao J H, Tzeng D, et al.2017. MYC2 orchestrates a hierarchical transcriptional cascade that regulates jasmonate-mediated plant immunity in tomato[J]. Plant Cell, 29(8): 1883-1906. [41] Fernández-Calvo P, Chini AS, Fernández-Barbero G, et al.2011. The Arabidopsis bHLH transcription factors MYC3 and MYC4 are targets of JAZ repressors and act additively with MYC2 in the activation of jasmonate responses[J]. The Plant Cell, 23(2): 701-715. [42] Figueroa P, Browse J.2015. Male-sterility in Arabidopsis induced by overexpression of a MYC5-SRDX chimeric repressor[J]. Plant Journal, 81(6): 849-860. [43] Fu J Y, Liu L J, Liu Q, et al.2020. ZmMYC2 exhibits diverse functions and enhances JA signaling in transgenic Arabidopsis[J]. Plant Cell Reports, 39(2): 273-288. [44] Fursova O V, Pogorelko G V, Tarasov V A.2009. Identification of ICE2, a gene involved in cold acclimation which determines freezing tolerance in Arabidopsis thaliana[J]. Gene, 429(1-2): 98-103. [45] Gao C H, Qi S H, Liu K G, et al.2016. MYC2, MYC3, and MYC4 function redundantly in seed storage protein accumulation in Arabidopsis[J]. Plant Physiology & Biochemistry, 108: 63-70. [46] Guo D, Li H L, Wang Y, et al.2019. A myelocytomatosis transcription factor from Hevea brasiliensis positively regulates the expression of the small rubber particle protein gene[J]. Industrial Crops & Products, 133: 90-97. [47] Hiruma K, Nishiuchi T, Kato T, et al.2011. Arabidopsis ENHANCED DISEASE RESISTANCE 1 is required for pathogen-induced expression of plant defensins in nonhost resistance, and acts through interference of MYC2-mediated repressor function[J]. The Plant Journal, 67(6): 980-992. [48] Hou L, Liu W, Li Z, et al.2014. Identification and expression analysis of genes responsive to drought stress in peanut[J]. Russian Journal of Plant Physiology, 61(6): 842-852. [49] Hussain S, Zhang J H, Zhong C, et al.2017. Effects of salt stress on rice growth, development characteristics, and the regulating ways: A review[J]. Journal of Integrative Agriculture, 16(011): 2357-2374. [50] Kang J Y, Choi H I, Im M Y, et al.2002. Arabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic acid signaling[J]. Plant Cell, 14(2): 343-357. [51] Kazan K, Manners J M.2013. MYC2: The master in action[J]. Molecular Plant, 2013, 6(3): 686-703. [52] Li X M, Zhong M, Qu L N, et al.2021. AtMYB32 regulates the ABA response by targeting ABI3, ABI4 and ABI5 and the drought response by targeting CBF4 in Arabidopsis[J]. Plant Science, 310: 110983. [53] Li X X, Duan X P, Jiang H X, et al.2006. Genome-wide analysis of basic/helix-loop-helix transcription factor family in rice and Arabidopsis[J]. Plant Physiology, 141(4): 1167-1184. [54] Lobo M B, Molina A, Solano R.2002. Constitutive expression of ETHYLENE-RESPONSE-FACTOR1 in Arabidopsis confers resistance to several necrotrophic fungi[J]. The Plant Journal, 29(1): 23-32. [55] Long J A, Ohno C, Smith Z R, et al.2006. TOPLESS regulates apical embryonic fate in Arabidopsis[J]. Science, 2006, 312(5779): 1520-1523. [56] Lorenzo O, Piqueras R, Sánchez-Serrano J J, et al.2003. ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense[J]. The Plant Cell, 15(1): 165-178. [57] Lorenzo O, Chico J M, Saénchez-Serrano J J, et al.2004. JASMONATE-INSENSITIVE1 encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defense responses in Arabidopsis[J]. Plant Cell, 16(7): 1938-1950. [58] Ludwig S R, Habera L F, Wessler D, et al.1989. Lc, a member of the maize R gene family responsible for tissue-specific anthocyanin production, encodes a protein similar to transcriptional activators and contains the myc-homology region[J]. Proceedings of the National Academy of Sciences of the USA, 86(18): 7092-7096. [59] Luscher B, Eisenman R N.1990. New light on Myc and Myb. Part I. Myc[J]. Genes & Development, 4(12): 2025-2035. [60] Massub T M, Zakaria K, P S C, et al.2021. Comparison of genomic prediction methods for yellow, stem, and leaf rust resistance in wheat landraces from Afghanistan[J]. Plants, 10(3): 558. [61] Miller B, Kontoyianni M, Slater O.2020. Decoding protein-protein interactions: An overview[J]. Current Topics in Medicinal Chemistry, 20(10): 855-882. [62] Miura K, Jin J B, Lee J, et al.2007. SIZ1-Mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis[J]. The Plant Cell, 19(4): 1403-1414. [63] Nakata M, Ohme-Takagi M.2013. Two bHLH-type transcription factors, JA-ASSOCIATED MYC2-LIKE2 and JAM3, are transcriptional repressors and affect male fertility[J]. Plant Signaling & Behavior, 8(12): e26473. [64] Ogawa S, Miyamoto K, Nemoto K, et al.2017. OsMYC2, an essential factor for JA-inductive sakuranetin production in rice, interacts with MYC2-like proteins that enhance its transactivation ability[J]. Scientific Reports, 7: 40175. [65] Ozlem K, Nurcan T, Attila G.2016. Predicting protein-protein interactions from the molecular to the proteome level[J]. Chemical Reviews, 116(8): 4884-4909. [66] Pan L Y, Zhao X Y, Chen M, et al.2019. Effect of exogenous methyl jasmonate treatment on disease resistance of postharvest kiwifruit[J]. Food Chemistry, 305(3): 125483. [67] Pauwels L, Goossens A, 2011. The JAZ proteins: A crucial interface in the jasmonate signaling cascade[J]. The Plant Cell, 23(9): 3089-3100. [68] Pires N, Dolan L.2010. Origin and diversification of Basic-Helix-Loop-Helix proteins in plants[J]. Molecular Biology & Evolution, 27(4): 862-874. [69] Pozo M J, Van Der E S, Van Loon L C, et al.2008. Transcription factor MYC2 is involved in priming for enhanced defense during rhizobacteria-induced systemic resistance in Arabidopsis thaliana[J]. New Phytologist, 180(2): 511-523. [70] Prasad B R V, Kumar S V, Nandi A, et al.2012. Functional interconnections of HY1 with MYC2 and HY5 in Arabidopsis seedling development[J]. BioMed Central, 12(1): 37. [71] Qi T C, Huang H, Song S S, et al.2015. Regulation of jasmonate-mediated stamen development and seed production by a bHLH-MYB complex in Arabidopsis[J]. Plant Cell, 27(6): 1620-1633. [72] Ramirez-Prado J S, Latrasse D, Rodriguez-Granados N Y, et al.2019. The polycomb protein LHP1 regulates Arabidopsis thaliana stress responses through the repression of the MYC2-dependent branch of immunity[J]. The Plant Journal, 100(6): 1118-1131. [73] Ramón P, Francisco R L, José L.2016. Serotonin modulates Arabidopsis root growth via changes in reactive oxygen species and jasmonic acid-ethylene signaling[J]. Physiologia Plantarum, 158(1): 92-105. [74] Ren Y J, Zou W H, Feng J F, et al.2022. Characterization of the sugarcane MYC gene family and the negative regulatory role of ShMYC4 in response to pathogen stress[J]. Industrial Crops and Products, 176: 114292. [75] Schaller A, Stintzi A.2009. Enzymes in jasmonate biosynthesis-structure, function, regulation[J]. Phytochemistry, 70(13-14): 1532-1538. [76] Schmiesing A, Emonet A, Gouhier-Darimont C, et al.2016. Arabidopsis MYC transcription factors are the target of hormonal salicylic acid/Jasmonic acid cross talk in response to pieris brassicae egg extract[J]. Plant Physiology, 170(4): 2432-2443. [77] Schweizer F, Patricia P, Zander M, et al.2013. Arabidopsis basic helix-loop-helix transcription factors MYC2, MYC3, and MYC4 regulate glucosinolate biosynthesis, insect performance, and feeding behavior[J]. The Plant Cell, 25(8): 3117-3132. [78] Seo J S, Joo J, Kim M J, et al.2011. OsbHLH148, a basic helix-loop-helix protein, interacts with OsJAZ proteins in a jasmonate signaling pathway leading to drought tolerance in rice[J]. Plant Journal for Cell & Molecular Biology, 65(6): 907-921. [79] Sheard L B, Tan X, Mao H, et al.2010. Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor[J]. Nature, 468(7322): 400-405. [80] Shen Q, Lu X, Yan T X, et al.2016. The jasmonate-responsive AaMYC2 transcription factor positively regulates artemisinin biosynthesis in Artemisia annua[J]. New Phytologist, 210(4): 1269-1281. [81] Shen X Y, Wang Z L, Song X F, et al.2014. Transcriptomic profiling revealed an important role of cell wall remodeling and ethylene signaling pathway during salt acclimation in Arabidopsis[J]. Plant Molecular Biology, 86(3): 303-317. [82] Shimizu Y, Maeda K, Kato M, et al.2011. Co-expression of GbMYB1 and GbMYC1 induces anthocyanin accumulation in roots of cultured Gynura bicolor DC. plantlet on methyl jasmonate treatment[J]. Plant Physiology & Biochemistry, 49(2): 159-167. [83] Shoko Y, Akihito K, Daisuke T, et al.2012. Involvement of OsJAZ8 in jasmonate-induced resistance to bacterial blight in rice[J]. Plant and Cell Physiology, 53(12): 2060-2072. [84] Song S S, Huang H, Gao H, et al.2014. Interaction between MYC2 and ETHYLENE INSENSITIVE3 modulates antagonism between jasmonate and ethylene signaling in Arabidopsis[J]. Plant Cell, 26(1): 263-279. [85] Song S S, Huang H, Wang J, et al.2017. MYC5 is involved in jasmonate-regulated plant growth, leaf senescence and defense responses[J]. Plant & Cell Physiology, 58(10): 1752-1763. [86] Thines B, Katsir L, Melotto M, et al.2007. JAZ repressor proteins are targets of the SCF(COI1) complex during jasmonate signalling[J]. Nature, 448(7154): 661-665. [87] Uji Y, Akimitsu K, Gomi K.2017. Identification of OsMYC2-regulated senescence-associated genes in rice[J]. Planta, 245(6): 1241-1246. [88] Wang H, Ding C W, Du H P, et al.2014. Identification of soybean MYC2-like transcription factors and overexpression of GmMYC1 could stimulate defense mechanism against common cutworm in transgenic tobacco[J]. Biotechnology Letters, 36(9): 1881-1892. [89] Wang H P, Li Y, Pan J J, et al.2017. The bHLH transcription factors MYC2, MYC3, and MYC4 are required for jasmonate-mediated inhibition of flowering in Arabidopsis[J]. Molecular Plant, 10(11): 1461-1464. [90] Wang P F, Su L, Gao H H, et al.2018. Genome-wide characterization of bHLH genes in grape and analysis of their potential relevance to abiotic stress tolerance and secondary metabolite biosynthesis[J]. Frontiers in Plant Science, 9: 64. [91] Wang Y J, Zhang Z G, He X J, et al.2003. A rice transcription factor OsbHLH1 is involved in cold stress response[J]. Theoretical & Applied Genetics, 107(8): 1402-1409. [92] Wasternack C, Hause B.2018. Jasmonates: Biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany[J]. Annals of Botany, 111(6): 1021-1058. [93] Wu F, Deng L, Zhai Q, et al.2019. Mediator subunit MED25 couples alternative splicing of JAZ genes with fine tuning jasmonate signaling[J]. The Plant Cell, 32(2): 429-448. [94] Wu K Q, Zhang L, Zhou C H, et al.2008. HDA6 is required for jasmonate response, senescence and flowering in Arabidopsis[J]. Journal of Experimental Botany, 59(2):225-234. [95] Xu Y H, Liao Y C, Lv F F, et al.2017. Transcription factor AsMYC2 controls the jasmonate-responsive expression of ASS1 regulating sesquiterpene biosynthesis in Aquilaria sinensis (Lour.) Gilg[J]. Plant & Cell Physiology, 58(11): 1924-1933. [96] Yang G Y, Wang Y C, Zhang K M, et al.2014. Expression analysis of nine small heat shock protein genes from Tamarix hispida in response to different abiotic stresses and abscisic acid treatment[J]. Molecular Biology Reports, 41(3): 1279-1289. [97] Yang Y F, Zhang K K, Yang L Y, et al.2018. Identification and characterization of MYC transcription factors in Taxus sp.[J]. Gene, 675: 1-8. [98] Yuan H M, Sheng Y, Chen W J, et al.2017. Overexpression of Hevea brasiliensis HbICE1 enhances cold tolerance in Arabidopsis[J]. Frontiers in Plant Science, 8: 1462. [99] Yuya U, Shiduku T, Daisuke T, et al.2016. Overexpression of OsMYC2 results in the up-regulation of early JA-rresponsive genes and bacterial blight resistance in rice[J]. Plant & Cell Physiology, 57(9): 1814-1827. [100] Zhang H T, Hedhil Si, Grégory Met al.2011. The basic helix-loop-helix transcription factor CrMYC2 controls the jasmonate-responsive expression of the ORCA genes that regulate alkaloid biosynthesis in Catharanthus roseus[J]. Plant Journal, 67(1): 61-71. [101] Zhang X, Zhu Z Q, An F Y, et al.2014. Jasmonate-activated MYC2 represses ETHYLENE INSENSITIVE3 activity to antagonize ethylene-promoted apical hook formation in Arabidopsis[J]. Plant Cell, 26(3): 1105-1117. [102] Zhang Y X, Sun T Z, Liu S Q, et al.2016. MYC cis-elements in PsMPT promoter is involved in chilling response of Paeonia suffruticosa[J]. PLOS ONE, 11(5): e0155780. [103] Zhao M Li, Wang J N, Shan W, et al.2012. Induction of jasmonate signalling regulators MaMYC2s and their physical interactions with MaICE1 in methyl jasmonate-induced chilling tolerance in banana fruit[J]. Plant Cell & Environment, 36(1): 30-51. [104] Zhou Y Y, Sun W, Chen J F, et al.2016. SmMYC2a and SmMYC2b played similar but irreplaceable roles in regulating the biosynthesis of tanshinones and phenolic acids in Salvia miltiorrhiza[J]. Scientific Reports, 6: 22852. [105] Zhu X Y, Chen J Y, Xie Z K, et al.2015. Jasmonic acid promotes degreening via MYC2/3/4- and ANAC019/055/072-mediated regulation of major chlorophyll catabolic genes[J]. The Plant Journal, 84(3): 597-610. [106] Zuo Z F, Kang H G, Hong Q C, et al.2020. A novel basic helix-loop-helix transcription factor, ZjICE2 from Zoysia japonica confers abiotic stress tolerance to transgenic plants via activating the DREB/CBF regulon and enhancing ROS scavenging[J]. Plant Molecular Biology, 102(4-5): 447-462. |
|
|
|