|
|
Simultaneous Quantification Method of DNA Copy Number for Three Food-borne Pathogens by Multiplex Droplet Digital PCR |
ZHANG Ming-Ming1, XIAO Jian1, LIN Xiu-Ming1, YIN Wei-Lu1, LIANG Mei-Dan1, ZHOU Lu2, SUN Xue-Qi1,* |
1 Guangzhou Institute for Food Inspection, Guangzhou 511406, China; 2 Guangdong Institute of Food Inspection, Guangzhou 510407, China |
|
|
Abstract Food-borne microorganisms are important factors affecting food quality and safety. Droplet digital PCR (ddPCR), which can be used for the absolute quantitative detection of nucleic acids, plays an increasingly important role in the detection of food-borne pathogens. In order to quantify the genome copy numbers of food-borne pathogens, a strategy for simultaneous detection of the DNA copy numbers of Salmonella typhi, Staphylococcus aureus and Listeria monocytogenes by multiplex droplet digital PCR (ddPCR) was developed in this study. Primers and probes targeting ttrA/ttrC、FMN-binding glutamate synthase、invasion associated endopeptidase gene were selected to evaluate the feasibility and applicability of the strategy by specific verification using TaqMan probe qPCR. The probes for Salmonella typhi and Staphylococcus aureus were labeled with 6-carboxy-fluorescein (FAM) fluorophore, and the probe for L. monocytogenes was labeled with hexachloro fluorescein (HEX) fluorophore. The detection systems of simplex ddPCR for 3 target strains were constructed. On this basis, through the optimization of primer and probe concentration and annealing temperature, a multiplex ddPCR detection system for simultaneous, rapid and absolute quantitative detection of genomic copy numbers of Salmonella typhi, Staphylococcus aureus and L. monocytogenes in the same reaction system was constructed. The multiplex ddPCR detection system could obtain fluorescent amplification with 8 (23) distinct clusters under the optimal condition obtained by means of annealing temperature optimization, and the quantitative linear range of these 3 pathogens were 235~0.23、284~0.18、380~0.42 copies/µL, which were almost the same as simplex ddPCR for single strain, and the linear correlation coefficient R2 in the quantitative detection range were all greater than 0.999 with excellent repeatability. The constructed multiplex ddPCR detection system had strong specificity, good stability and wide quantitative range, which could provide technical support for absolute quantitative detection of food-borne pathogens without cultivation.
|
Received: 10 September 2021
|
|
Corresponding Authors:
*sun-xueqi@163.com
|
|
|
|
[1] 曹际娟, 贾俊涛, 倪长鹏, 等. 2016. SN/T 1870-2016出口食品中食源性致病菌检测方法实时荧光PCR法[S]. 北京: 国家质量监督检验检疫总局. (Cao J J, Jia J T, Ni C P, et al.2016. SN/T 1870-2016 method for the detection of pathogens in food for export - real-time PCR method[S]. Beijing: General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China.) [2] 陈小敏, 杨华, 桂国弘, 等. 2017. 2008~2015年全国食物中毒情况分析[J]. 食品安全导刊, 25: 69-73. (Chen X M, Yang H, Gui G H, et al.2017. Analysis of the food poisoning in China from 2008 to 2015[J]. China Food Safety Magazine, 25: 69-73.) [3] 刘津, 刘二龙, 谢力, 等. 2016. 数字聚合酶链式反应技术在食品安全检测领域的研究应用进展[J]. 食品科学, 37(17): 276-281. (Liu J, Liu E L, Xie L, et al.2016. Progress in research and application of digital polymerase chain reaction (dPCR) in food safety detection[J]. Food Science, 37(17): 276-281.) [4] 王丹丹, 刘鸣畅, 杨艳歌, 等. 2021. 食源性致病菌快速检测技术研究进展[J/OL]. 食品科学. DOI: 10.7506/spkx1002-6630-20201105-048. (Wang D D, Liu M C, Yang Y G, et al.2021. Research progress on rapid detection of foodborne pathogens[J/OL]. Food Science. DOI: 10.7506/spkx1002-6630-20201105-048.) [5] 王珊, 李志娟, 苗丽. 2015. 微滴式数字PCR与实时荧光PCR检测羊肉制品中羊源和猪源性成分方法的比较[J]. 肉类工业, 7: 38-41. (Wang S, Li Z J, Miao L.2015. Comparison of microsphere digital PCR and real-time fluorescence PCR for detection mutton-derived and porcine-derived ingredients in mutton products[J]. Meat Industry, 7: 38-41.) [6] 魏咏新, 马丹, 李丹, 等. 2020. 食品中Escherichia coli O157:H7微滴数字PCR绝对定量检测方法的建立[J]. 食品科学, 41(16): 259-265. (Wei Y X, Ma D, Li D, et al.2020. Establishment of droplet digital PCR system for absolute quantitative detection of Escherichia coli O157:H7 in foods[J]. Food Science, 41(16): 259-265.) [7] 吴清平, 范宏英, 张菊梅, 等. 2005. 食源性致病菌免疫及分子检测新技术研究进展[J]. 食品科学, 26(11): 269-273. (Wu Q P, Fan H Y, Zhang J M, et al.2005. Review on immune and new molecular detective techniques for foodborne bacterial pathogens[J]. Food Science, 26(11): 269-273.) [8] 邬升超, 黄斐, 赵瀛, 等. 2016. 利用多重数字PCR检测KRAS相关突变[J]. 复旦学报(医学版), 43(06): 697-703, 709. (Wu S C, Huang F, Zhao Y, et al.2016. KRAS related mutations detected by multiplex digital PCR[J]. Fudan University Journal of Medical Sciences, 43(06): 697-703, 709.) [9] 赵新, 兰青阔, 陈锐, 等. 2017. 应用微滴数字PCR技术快速检测食用菌中沙门氏菌[J]. 食品与生物技术学报, 36(03): 315-321. (Zhao X, Lan Q K, Chen R, et al.2017. Rapid detection of Salmonella spp. in edible fungi by droplet digital PCR[J]. Journal of Food Science and Biotechnology, 36(03): 315-321.) [10] Bosman K J, Nijhuis M, van Ham P M, et al.2015. Comparison of digital PCR platforms and semi-nested qPCR as a tool to determine the size of the HIV reservoir[J]. Scientific Reports, 5(1): 1295-1300. [11] Brakstad O G, Aasbakk K, Maeland J A.1992. Detection of Staphylococcus aureus by polymerase chain reaction amplification of the nuc gene[J]. Journal of Clinical Microbiology, 30(7): 1654-1660. [12] Cassinari K, Alessandri-Gradt E, Chambon P, et al.2021. Assessment of multiplex digital droplet RT-PCR as a diagnostic tool for SARS-CoV-2 detection in nasopharyngeal swabs and saliva samples[J]. Clinical Chemistry, 67(5): 736-741. [13] Cazacu I M, Semaan A, Stephens B, et al.2020. Diagnostic value of digital droplet polymerase chain reaction and digital multiplexed detection of single-nucleotide variants in pancreatic cytology specimens collected by EUS-guided FNA[J]. Gastrointestinal Endoscopy, 93(5): 1142-1151. [14] de Kock R, Baselmans M, Scharnhorst V, et al.2021a. Sensitive detection and quantification of SARS-CoV-2 by multiplex droplet digital RT-PCR[J]. European Journal of Clinical Microbiology and Infectious Diseases, 40(4): 807-813. [15] de Kock R, van den Borne B, Youssef-El Soud M, et al.2021b. Therapy monitoring of EGFR-positive non-small cell lung cancer patients using ddPCR multiplex assays[J]. Journal of Molecular Diagnostics, 23(4): 495-505. [16] Dobnik D, Spilsberg B, Bogožalec Košir A, et al.2015. Multiplex quantification of 12 European Union authorized genetically modified maize lines with droplet digital polymerase chain reaction[J]. Analytical Chemistry, 87(16): 8218-8226. [17] Ebrahimizadeh W, Guérard K P, Rouzbeh S, et al.2020. Design and development of a fully synthetic multiplex ligation-dependent probe amplification-based probe mix for detection of copy number alterations in prostate cancer formalin-fixed, paraffin-embedded tissue samples[J]. Journal of Molecular Diagnostics, 22(10): 1246-1263. [18] European Network of GMO Laboratories (ENGL). 2015. Definition of minimum performance requirements for analytical methods of GMO testing[EB/OL]. http://gmo-crl. jrc.ec.europa.eu/. [19] Havelaar A H, Kirk M D, Torgerson P R, et al.2015. World Health Organization global estimates and regional comparisons of the burden of foodborne disease in 2010[J]. PLOS Medicine, 12(12): 1-23. [20] Hindson B J, Ness K D, Masquelier D A, et al.2011. High-throughput droplet digital PCR system for absolute quantitation of DNA copy number[J]. Analytical Chemistry, 83(22): 8604-8610. [21] Janku F, Huang H J, Fujii T, et al.2017. Multiplex KRASG12/G13 mutation testing of unamplified cell-free DNA from the plasma of patients with advanced cancers using droplet digital polymerase chain reaction[J]. Annals of Oncology, 28(3): 642-650. [22] Košir A B, Spilsberg B, Holst-Jensen A, et al.2017. Development and inter-laboratory assessment of droplet digital PCR assays for multiplex quantification of 15 genetically modified soybean lines[J]. Scientific Reports, 7(1): 8601. [23] Lei S, Gu X, Xue W, et al.2020. A 4-plex droplet digital PCR method for simultaneous quantification and differentiation of pathogenic and non-pathogenic Vibrio parahaemolyticus based on single intact cells[J]. Frontiers in Microbiology, 11: 1727. [24] Lun F M, Chiu R W, Chan K C, et al.2008. Microfluidics digital PCR reveals a higher than expected fraction of fetal DNA in maternal plasma[J]. Clinical Chemistry, 54(10): 1664-1672. [25] Ma J, Li N, Guarnera M, et al.2013. Quantification of plasma miRNAs by digital PCR for cancer diagnosis[J]. Biomarker Insights, 8: 127-136. [26] Malorny B, Paccassoni E, Fach P, et al.2004. Diagnostic real-time PCR for detection of Salmonella in food[J]. Applied and Environmental Microbiology, 70(12): 7046-7052. [27] Morisset D, Štebih D, Milavec M, et al.2013. Quantitative analysis of food and feed samples with droplet digital PCR[J]. PLOS ONE, 8(5): e62583. [28] Navarro Sanchez M E, Devard N, Houy C, et al.2020. Multiplex reverse transcriptase droplet digital PCR for the simultaneous quantification of four dengue serotypes: Proof of concept study[J]. Biologicals, 67: 62-68. [29] Niu C, Xu Y, Zhang C, et al.2018. Ultrasensitive single fluorescence-labeled probe-mediated single universal primer-multiplex-droplet digital polymerase chain reaction for high-throughput genetically modified organism screening[J]. Analytical Chemistry, 90(9): 5586-5593. [30] Oscorbin I, Kechin A, Boyarskikh U, et al.2019. Multiplex ddPCR assay for screening copy number variations in BRCA1 gene[J]. Breast Cancer Research and Treatment, 178(3): 545-555. [31] Pretto D, Maar D, Yrigollen C M, et al.2015. Screening newborn blood spots for 22q11.2 deletion syndrome using multiplex droplet digital PCR[J]. Clinical Chemistry, 61(1): 182-190. [32] Upadhyay B P, Utrarachkij F, Thongshoob J, et al.2010. Detection of Salmonella invA gene in shrimp enrichment culture by polymerase chain reaction[J]. The Southeast Asian Journal of Tropical Medicine and Public Health, 41(2): 426-435. [33] Vidal-Folch N, Gavrilov D, Raymond K, et al.2018. Multiplex droplet digital PCR method applicable to newborn screening, carrier status, and assessment of spinal muscular atrophy[J]. Clinical Chemistry, 64(12): 1753-1761. [34] White R A, Blainey P C, Fan H C, et al.2009. Digital PCR provides sensitive and absolute calibration for high throughput sequencing[J]. BMC Genomics, 10: 116. [35] World Health Organization.2020. Food safety [DB/OL]. https://www.who.int/news-room/fact-sheets/detail/food-safety. [36] Yang L, Chen Y, Li R, et al.2021. Universal LNA probe-mediated multiplex droplet digital polymerase chain reaction for ultrasensitive and accurate quantitative analysis of genetically modified organisms[J]. Journal of Agricultural and Food Chemistry, 69(5): 1705-1713. [37] Yeh K S, Chen T H, Liao C W, et al.2002. PCR amplification of the Salmonella typhimurium fimY gene sequence to detect the Salmonella species[J]. International Journal of Food Microbiology, 78(3): 227-234. [38] Yurick D, Khoury G, Clemens B, et al.2019. Multiplex droplet digital PCR assay for quantification of human T-cell leukemia virus type 1 subtype cDNA proviral load and T cells from blood and respiratory exudates sampled in a remote setting[J]. Journal of Clinical Microbiology Journal, 57(2): e01063. |
|
|
|