|
|
Research Progress on the Role of Dehydrin in Plant Abiotic Stress |
PAN Xiao-Xiao, HU Hui-Fang, CHEN Nan, ZHANG Hua-Feng, CHEN Ru-Gang* |
College of Horticulture, Northwest A&F University, Yangling 712100, China |
|
|
Abstract Dehydration proteins (dehydrins, DHN) are group 2 members of the late embryogenesis abundant proteins (LEA). DHN is usually produced and accumulated when plants are subjected to adversity stress to enhance plant tolerance to adversity, and therefore plays an important role in plant resistance to adversity. This paper reviews the protein structure and functional characteristics of dehydrin, as well as its role under abiotic stresses such as low temperature, drought and salt stress, with a view to providing a reference for in-depth studies of dehydrin. The application prospect of using modern biotechnology to use dehydrin for improving plant tolerance to adversity is foreseen. This review summarizes the function of dehydrin, explores the action mechanism of dehydrins and analyzes the molecular mechanism of dehydrins in the review, so as to breed new varieties and maintain high and stable yields and sustainable development.
|
Received: 22 June 2021
|
|
Corresponding Authors:
*rugangchen@126.com
|
|
|
|
[1] 刘凌昊. 2020. AnDHN提高拟南芥非生物胁迫抗性分析[D]. 硕士学位论文, 沈阳农业大学, 导师: 陈丽静, pp. 68. ( Liu L H.2020. Analysis of AnDHN from Ammopiptanthus nanus in Arabidopsis improves tolerance to abiotic stress[D]. Thesis for M.S., Shenyang Agricultural University, Supervisor: Chen L J, pp. 68.) [2] 刘洋, 邢鑫, 李德全. 2011. LEA蛋白的分类与功能研究进展[J]. 生物技术通报, (8): 36-43. (Liu Y, Xing X, Li D Q. 2011. Studies on the classification and function of LEA proteins[J]. Biotechnology Bulletin, (8): 36-43.) [3] 罗新义, 冯昌军, 李红, 等. 2004. 低温胁迫下肇东苜蓿 SOD、脯氨酸活性变化初报[J]. 中国草地, 26(4): 79-81. ( Luo X Y, Feng C J, Li H, et al.2004. Study on changes of SOD and proline activity during low temperature stress on Medicago sativa L.cv.Zhaodong[J]. Chinese Journal of Grassland, 26(4): 79-81.) [4] 薛蓉, 吴亦洁, 李晓晶. 2018. 核磁共振波谱对大米脱水素K片段在模拟膜中的结构研究[J].分析化学, 46(5): 664-669. ( Xue R, Wu Y J, Li X J.2018. Structural study on K-segment of rice dehydrin in mimetic membrane[J]. Chinese Journal of Analytical Chemistry, 46(5): 664-669.) [5] 张琪, 周薇, 崔慧萍, 等. 2017. 不同类型脱水素在植物低温胁迫应答中的作用[J]. 核农学报, 31(4): 689-695. (Zhang Q, Zhou W, Cui H P, et al.2017. Roles of different dehydrins on low temperature response in plants[J]. Journal of Nuclear Agricultural Sciences, 31(4): 689-695.) [6] Bao F, Du D, An Y, et al.2017. Overexpression of Prunus mume dehydrin genes in tobacco enhances tolerance to cold and drought[J]. Frontiers in Plant Science, 8: 151. [7] Battaglia M, Olvera-Carrillo Y, Garciarrubio A, et al.2008. The enigmatic LEA proteins and other hydrophilins[J]. Plant Physiology, 148: 6-24. [8] Cao Y, Xiang X, Geng M, et al.2017. Effect of HbDHN1 and HbDHN2 genes on abiotic stress responses in Arabidopsis[J]. Frontiers in Plant Science, 8: 470. [9] Chen R G, Jing H, Guo W L, et al.2015. Silencing of dehydrin CaDHN1 diminishes tolerance to multiple abiotic stresses in Capsicum annuum L.[J]. Plant Cell Reports, 34(12): 2189-2200. [10] Chiappetta A, Muto A, Bruno L, et al.2015. A dehydrin gene isolated from feral olive enhances drought tolerance in Arabidopsis transgenic plants[J]. Frontiers in Plant Science, 30(6): 392. [11] Close T J.1996. Dehydrins: Emergence of a biochemical role of a family of plant dehydration proteins[J]. Physiology Plant, 97, 795-803. [12] Cui H, Wang Y, Yu T, et al.2020. Heterologous expression of three Ammopiptanthus mongolicus dehydrin genes confers abiotic stress olerance in Arabidopsis thaliana[J]. Plants (Basel). 9(2): 193. [13] Falavigna V D S, Malabarba J, Silveira C P, et al.2019. Characterization of the nucellus-specific dehydrin MdoDHN11 demonstrates its involvement in the tolerance to water deficit[J]. Plant Cell Reports, 38(9): 1099-1107. [14] Galau G A, Hughes D W, Dure L.1986. Abscisic acid induction of cloned cotton late embryogenesis-abundant (Lea) mRNAs[J]. Plant Molecular Biology, 7(3): 155-170. [15] Garay-Arroyo A, Colmenero-Flores J M, Garciarrubio A, et al.2000. Highly hydrophilic proteins in prokaryotes and eukaryotes are common during conditions of water deficit[J]. Journal of Biological Chemistry, 25, 275(8): 5668-5674. [16] Graether S P, Boddington K F.2014. Disorder and function: A review of the dehydrin protein family[J]. Frontiers in Plant Science, 5: 576. [17] Guo X, Zhang L, Wang X, et al.2019. Overexpression of Saussurea involucrata dehydrin gene SiDHN promotes cold and drought tolerance in transgenic tomato plants[J]. PLOS ONE, 14(11): e0225090. [18] Halder T, Upadhyaya G, Basak C, et al.2018. Dehydrins impart protection against oxidative stress in transgenic tobacco plants[J]. Frontiers in Plant Science, 9: 136. [19] Hand S C, Menze M A, Toner M, et al.2011. LEA proteins during water stress: Not just for plants anymore[J]. Annual Review of Physiology, 73(73): 115-134. [20] Hanin M, Brini F, Ebel C, et al.2011. Plant dehydrins and stress tolerance: Versatile proteins for complex mechanisms[J]. Plant Signaling and Behavior, 6(10): 1503-1509. [21] Hara M, Fujinaga M, Kuboi T.2004. Radical scavenging activity and oxidative modification of citrus dehydrin[J]. Plant Physiology and Biochemistry, 42(7-8): 657-662. [22] Hara M, Monna S, Murata T, et al.2016. The Arabidopsis KS-type dehydrin recovers lactate dehydrogenase activity inhibited by copper with the contribution of His residues[J]. Plant Science, 245: 135-142. [23] Houde M, Dallaire S, N'Dong D, et al.2004. Overexpression of the acidic dehydrin WCOR410 improves freezing tolerance in transgenic strawberry leaves[J]. Plant Biotechnology Journal, 2(5): 381-387. [24] Hu H, Xiong L.2014. Genetic engineering and breeding of drought-resistant crops[J]. Amnual Review of Plant Biology, 65: 715-741. [25] Hundertmark M, Hincha D K.2008. LEA (late embryogenesis abundant) proteins and their encoding genes in Arabidopsis thaliana[J]. BMC Genomics, 9: 118. [26] Jing H, Li C, Ma F, et al.2016. Genome-wide identification, expression diversication of dehydrin gene family and characterization of CaDHN3 in pepper (Capsicum annuum L.)[J]. PLOS ONE, 11(8): e0161073. [27] Kirungu J N, Magwanga R O, Pu L, et al.2020. Knockdown of Gh_A05G1554 (GhDHN_03) and Gh_D05G1729 (GhDHN_04) dehydrin genes, reveals their potential role in enhancing osmotic and salt tolerance in cotton[J]. Genomics, 112(2): 1902-1915. [28] Kosová K, Vítámvás P, Prášil I T.2014. Wheat and barley dehydrins under cold, drought, and salinity-what can LEA-II proteins tell us about plant stress response?[J]. Frontiers in Plant Science, 5: 343. [29] Li Q, Zhang X, Lv Q, et al.2017. Physcomitrella patens dehydrins (PpDHNA and PpDHNC) confer salinity and drought tolerance to transgenic Arabidopsis plants[J]. Frontiers in Plant Science, 8: 1316. [30] Li X, Liu Q, Feng H, et al.2020. Dehydrin MtCAS31 promotes autophagic degradation under drought stress[J]. Autophagy, 16(5): 862-877. [31] Liu H, Yu C, Li H, et al.2015. Overexpression of ShDHN, a dehydrin gene from Solanum habrochaites enhances tolerance to multiple abiotic stresses in tomato[J]. Plant Science, 231: 198-211. [32] Liu Y, Wang L, Zhang T, et al.2017. Functional characterization of KS-type dehydrin ZmDHN13 and its related conserved domains under oxidative stress[J]. Scientific Reports, 7(1): 7361. [33] Luo D, Hou X, Zhang Y, et al.2019. CaDHN5, a dehydrin gene from pepper, plays an important role in salt and osmotic stress responses[J]. International Journal of Molecular Medicine, 20(8): 1989. [34] Martin J, Geromanos S, Tempst P, et al.1993. Identification of nucleotide-binding regions in the chaperonin proteins GroEL and GroES[J]. Nature, 366: 279-282. [35] Maryan K E, Lahiji H S, Farrokhi N, et al.2019. Analysis of Brassica napus dehydrins and their co-expression regulatory networks in relation to cold stress[J]. Gene Expression Patterns, 31: 7-17. [36] Maszkowska J, Dębski J, Kulik A, et al.2019. Phosphoproteomic analysis reveals that dehydrins ERD10 and ERD14 are phosphorylated by SNF1-related protein kinase 2.10 in response to osmotic stress[J]. Plant Cell Environ, 42(3): 931-946. [37] Mittler R, Kim Y, Song L, et al.2006. Gain- and loss-of-function mutations in Zat10 enhance the tolerance of plants to abiotic stress[J]. FEBS Letters, 580(28-29): 6537-6542. [38] Nguyen P N, Tossounian M A, Kovacs D S, et al.2020. Dehydrin ERD14 activates glutathione transferase Phi9 in Arabidopsis thaliana under osmotic stress[J]. Biochimica & Biophysica Acta-General Subjects, 1864(3): 129506. [39] Nylander M, Svensson J, Palva E T, et al.2001. Stress-induced accumulation and tissue-specific localization of dehydrins in Arabidopsis thaliana[J]. Plant Molecular Biology, 45(3): 263-279. [40] Ochoa-Alfaro A E, Rodríguez-Kessler M, Pérez-Morales M B, et al.2012. Functional characterization of an acidic SK3 dehydrin isolated from an Opuntia streptacantha cDNA library[J]. Planta, 235(3): 565-578. [41] Peng Y, Reyes J L, Wei H, et al.2008. RcDhn5, a cold acclimation-responsive dehydrin from Rhododendron catawbiense rescues enzyme activity from dehydration effects in vitro and enhances freezing tolerance in RcDhn5-overexpressing Arabidopsis plants[J]. Physiologia Plantarum, 134(4): 583-597. [42] Poku S A, Seçgin Z, Kavas M.2019. Overexpression of KS-type dehydrins gene OeSRC1 from Olea europaea increases salt and drought tolerance in tobacco plants[J]. Plant Molecular Biology Reporter, 46(6): 5745-5757. [43] Qin Y X, Qin F.2016. Dehydrins from wheat x Thinopyrum ponticum amphiploid increase salinity and drought tolerance under their own inducible promoters without growth retardation[J]. Plant Physiology and Biochemistryl, 99: 142-149. [44] Rodríguez E M, Svensson J T, Malatrasi M, et al.2005. Barley Dhn13 encodes a KS-type dehydrin with constitutive and stress responsive expression[J]. Theoretical and Applied Genetics, 110(5): 852-858. [45] Rorat T, Szabala B M, Grygorowicz W J, et al.2006. Expression of SK3-type dehydrin in transporting organs is associated with cold acclimation in Solanum species[J]. Planta, 224(1): 205-221. [46] Rosales R, Romero I, Escribano MI, et al.2014. The crucial role of Φ- and K-segments in the in vitro functionality of Vitis vinifera dehydrin DHN1a[J]. Phytochemistry, 108: 17-25. [47] Ruelland E, Vaultier M N, Zachowski A, et al.2009. Cold signalling and cold acclimation in plants[J]. Advances in Botanical Research, 49: 35-150. [48] Saibi W, Zouari N, Masmoudi K, et al.2016. Role of the durum wheat dehydrin in the function of proteases conferring salinity tolerance in Arabidopsis thaliana transgenic lines[J]. International Journal of Biological Macromolecules, 85: 311-316. [49] Shekhawat U K, Srinivas L, Ganapathi T R.2011. MusaDHN-1, a novel multiple stress-inducible SK3-type dehydrin gene, contributes affirmatively to drought- and salt-stress tolerance in banana[J]. Planta, 234(5): 915-932. [50] Shi H, Chen Y, Qian Y, et al.2015. Low temperature-induced 30 (LTI30) positively regulates drought stress resistance in Arabidopsis: Effect on abscisic acid sensitivity and hydrogen peroxide accumulation[J]. Frontiers in Plant Science, 6: 893. [51] Szabala B M, Fudali S, Rorat T.2014. Accumulation of acidic SK3 dehydrins in phloem cells of cold- and drought-stressed plants of the Solanaceae[J]. Planta, 239(4): 847-863. [52] Welling A, Rinne P, Vihera-Aarnio A, et al.2004. Photoperiod and temperature differentially regulate the expression of two dehydrin genes during overwintering of birch (Betula pubescens Ehrh.)[J]. Journal of Experimental Botany, 55: 507-516. [53] Xing X, Liu Y K, Kong X P, et al.2011. Overexpression of a maize dehydrin gene, ZmDHN2b, in tobacco enhances tolerance to low temperature[J]. Plant Growth Regulation, 65(7): 709-778. [54] Yamasaki Y, Koehler G, Blacklock B J, et al.2013. Dehydrin expression in soybean[J]. Plant Physiology and Biochemistry, 70: 213-220. [55] Yang Y, Sun X, Yang S, et al.2014. Molecular cloning and characterization of a novel SK3-type dehydrin gene from Stipa purpurea[J]. Biochemical and Biophysical Research Communications, 448(2): 145-150. [56] Yu Z, Wang X, Mu X, et al.2019. RNAi mediated silencing of dehydrin gene WZY2 confers osmotic stress intolerance in transgenic wheat[J]. Functional Plant Biology, 46(10): 877-884. [57] Zhang H F, Liu S Y, Ma J H, et al.2019. CaDHN4, a salt and cold stress-responsive dehydrin gene from pepper decreases abscisic acid sensitivity in Arabidopsis[J]. International Journal of Molecular Medicine, 21(1): 26. [58] Zhang H, Shi Y, Liu X, et al.2018. Transgenic creeping bentgrass plants expressing a Picea wilsonii dehydrin gene (PicW) demonstrate improved freezing tolerance[J]. Plant Molecular Biology Reporter, 45(6): 1627-1635. [59] Zhou Y, He P, Xu Y, et al.2017. Overexpression of CsLEA11, a Y3SK2-type dehydrin gene from cucumber (Cucumis sativus), enhances tolerance to heat and cold in Escherichia coli[J]. AMB Express, 7(1): 182. [60] Zhu W, Zhang L, Lv H, et al.2014. The dehydrin wzy2 promoter from wheat defines its contribution to stress tolerance[J]. Functional & Integrative Genomics, 14(1): 111-125. |
[1] |
FAN Yu-Xin, Li Na, SONG Zhi-Hua, LIU Teng-Yue, DONG Bi-Ying, CAO Hong-Yan, DUAN Yu-Sheng, MENG Dong, FU Yu-Jie, YANG Qing. Response of NADPH Oxidase Gene Family to Abiotic Stress in Pigeonpea (Cajanus cajan)[J]. 农业生物技术学报, 2022, 30(2): 284-295. |
|
|
|
|