|
|
Effect of Silencing GbGSTU7 Gene on the Resistance to Fusarium Wilt of Gossypium barbadense |
DENG Xiao-Juan*, LU Xiao-Shuang, CHEN Qin, ZHANG Meng-Jie, QU Yan-Ying |
Xinjiang Agricultural University, Urumqi 830052, China |
|
|
Abstract The GSTU7 gene encodes glutathione transferase. In the previous research, this group found out that GbGSTU7 (GenBank No. GB_A03G0575) gene responds to the process of resistance to Fusarium wilt. In order to verify the GbGSTU7 gene in the resistance of Gossypium barbadense to Fusarium wilt, the Tobacco rattle virus-mediated virus induced gene silencing system was used to silence the GbGSTU7 gene in the disease-resistant material of Gossypium barbadense '06-146', and qPCR technology was used to analyze the expression of GbGSTU7 gene. The physiological race 7 of Fusarium wilt was used to infect the the GbGSTU7 gene silenced plants to study their disease resistance and measure the glutathione peroxidase activity of Gossypium barbadense. The results showed that the silencing efficiency of GbGSTU7 gene was 74%, and the disease index for cotton Fusarium wilt increased 31.4, the soluble protein content increased by 3 times, and the activity of glutathione peroxidase decreased by 2 times, indicating that the GbGSTU7 gene played an important role in the anti-fusarium wilt reaction of Gossypium barbadense. The silencing of GbGSTU7 affected protein transport and cooperated with glutathione peroxidase to resist infection by pathogens. This study provides a reference for the in-depth study of the mechanism of the GbGSTU7 gene involved in the resistance to Fusarium wilt of Gossypium barbadense.
|
Received: 30 June 2021
|
|
Corresponding Authors:
*dengxj007@163.com
|
|
|
|
[1] 陈斌. 2016. 棉花谷胱甘肽硫转移酶亚基编码基因GhGST的抗黄萎病功能研究[D]. 硕士学位论文, 河北农业大学, 导师: 王省芬, 马峙英, pp. 1. (Chen B.2016. Study on the anti-verticillium function of cotton glutathione thitransferase subunit encoding gene GhGST[D]. Thesis for M.S., Hebei Agricultural University, Supervisor: Wang S F, Ma Z Y, pp. 1.) [2] 崔慧萍, 周薇, 郭长虹. 2017. 植物过氧化物酶体在活性氧信号网络中的作用[J]. 中国生物化学与分子生物学报, 33(3): 220-226. (Cui H P, Zhou W, Guo C H.2017. The role of plant peroxisomes in ROS signalling network[J]. Biochemistry and Molecular Biology, 33(3): 220-226.) [3] 居婷. 2009. 镉胁迫下水稻谷胱甘肽转硫酶(GST)活性变化及其纯化鉴定[D]. 硕士学位论文, 南京农业大学, 导师: 葛滢, pp. 3-4. (JU T.2009. Changes of glutathione transferase (GST) activity in water rice under cadmium stress and its purification identification[D]. Thesis for M.S., Nanjing Agricultural University, Supervisor: Ge Y, pp. 3-4.) [4] 黄启秀. 2017. 海岛棉类黄酮代谢途径中与枯萎病抗性相关基因的克隆及功能验证[D]. 硕士学位论文, 新疆农业大学, 导师: 曲延英, pp. 13-14. (Huang Q X.2017. Cloning and functional identification of genes related to Fusarium wilt resistance in the flavonoid metabolism pathway of Sealand cotton[D]. Thesis for M.S., Xinjiang Agricultural University, Supervisor: Qu Y Y, pp. 13-14.) [5] 李姣, 于宗霞, 冯宝民. 2019. 植物中病毒诱导基因沉默技术的研究与应用进展[J]. 分子植物育种, 17(5): 1537-1542. (Li J, Yu Z X, Feng B M.2019. Advances in research and application of virus-induced gene silencing in plants[J]. Molecular Plant Breeding, 17(5): 1537-1542.) [6] 李扬, 马丽梅, 陈悦, 等. 2020. 棉花谷胱甘肽硫转移酶亚基编码基因GhGST3的抗黄萎病功能研究[J]. 河北农业大学学报, 43(6): 35-43. (Li Y, Ma L M, Chen Y, et al.2020. The Verticillium wilt resistance of glutathione S-transferase subunit encoding gene GhGST3 in Gossypium hirsutum[J]. Journal of Agricultural University of Hebei, 43(6): 35-43.) [7] 李玉霞, 曲延英, 艾海提·艾合买提, 等. 2020. 通过GbF3'H基因单独沉默及其与GbCHI和GbDFR基因共沉默研究其在海岛棉中抗枯萎病功能[J]. 棉花学报, 32(1): 1-10. (Li Y X, Qu Y Y, Ai H T, et al.Through single silencing GbF3'H gene and its co-silencing with GbCHI and GbDFR genes to study their function in resistance to Fusarium wilt in Gossypium barbadense[J]. Journal of Cotton Science, 32(1): 1-10.) [8] 刘艳. 2013. 海岛棉枯萎病抗性相关基因的克隆及功能验证[D]. 博士学位论文, 新疆农业大学, 导师: 曲延英, pp. 1-2. (Liu Y.2013. Cloning and functional validation of Fusarium wilt resistance genes in Island cotton[D]. Thesis for P.D., Xinjiang Agricultural University, Supervisor: Qu Y Y, pp. 1-2.) [9] 柳荫, 吴凤智, 陈龙,等. 2013. 考马斯亮蓝法测定核桃水溶性蛋白含量的研究[J]. 中国酿造, 32(12): 131-133. (Liu Y, Wu F Z, Chen L, et al.2013. Determination of water-soluble protein in walnut by Bradford method[J]. China Brewing, 32(12): 131-133.) [10] 陆小双, 郑凯, 龙遗磊, 等. 2021a. 海岛棉枯萎病抗性与糖基转移酶类基因表达量的相关性[J/OL]. 分子植物育种. (Lu X S, Zhen K, Long Y L.2021. Correlation between Fusarium wilt resistance and glycosyltransferase gene rxpression in Island cotton[J/OL]. Molecular Plant Breeding, https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=FZZW20210507002) [11] 陆小双, 陈琴, 韩万里, 等. 2021b. 海岛棉GbGSTU7的克隆及其对枯萎病菌侵染的应答[J]. 西北植物学报, 41(6): 910-918. (Lu X S, Chen Q, Han W L, et al.2021. Cloning of glutathione transferase gene GbGSTU7 and its response to Fusarium wilt infection, Acta Botanica Boreali-Occidentalia Sinica. 41(6): 910-918.) [12] 吕坤. 2013. 棉花病毒诱导的基因沉默体系的建立及其在棉花抗黄萎病中的应用[D]. 硕士学位论文, 南京农业大学, 导师: 王心宇, pp. 2. (Lv K.2013. Establishment of a gene silencing system induced by cotton virus and its application in resistance to Verticillium wilt in cotton[D]. Thesis for M.S., Nanjing Agricultural University, Supervisor: Wang X Y, pp. 2.) [13] 张明菊, 张浩朱, 朱华国, 等. 2020. 黄萎病对海/陆嫁接棉苗叶片中H2O2、抗病相关酶活性和GST、PAL基因表达的影响[J]. 华中农业大学学报, 39(03): 28-37. (Zhang M J, Zhang H Z Zhu H G, et al.2020. Effects of Verticillium wilt on the activities of H2O2, disease-resistance related enzymes and the expression of GST and PAL genes in sea/land grafted cotton seedlings[J]. Journal of Huazhong Agricultural University, 39(03): 28-37.) [14] 张胜, 李琴. 2016. 新疆海岛棉生产现状与发展建议[J]. 中国种业, 00(03): 6-8. (Zhang S, Li Q.2016. Current situation and development suggestions of cotton production in Xinjiang Island[J]. China Seed Industry, 00(03): 6-8.) [15] 张亚真, 张芬, 王丽鸳, 等. 2015. 植物谷胱甘肽转移酶在类黄酮累积中的作用[J]. 植物生理学报, 51(11): 1815-1820. (Zhang Y Z, Zhang F, Wang L Y, et al.2015. Plant glutathione transferase accumulated in the role of flavonoids[J]. Journal of plant physiology, 51(11): 1815-1820.) [16] Chan C, Lam H M.2014. A putative lambda class glutathione S-transferase enhances plant survival under salinity stress[J]. Plant and Cell Physiology, 55(3): 570-579. [17] Chen I H, Chiu M H, Cheng S F, et al.2013. The glutathione transferase of Nicotiana benthamiana NbGSTU4 plays a role in regulating the early replication of Bamboo mosaic virus[J]. New Phytologist, 199(3): 749-757. [18] Chen Z J, Scheffler B E, Dennis E, et al.2007. Toward sequencing cotton (Gossypium) genomes[J]. Plant Physiology, 145(4): 1303-1310. [19] Dixon D P, Lapthorn A J, Edwards R.2005. Synthesis and analysis of chimeric maize glutathione transferases[J]. Plant Science, 168(4): 873-881. [20] Dixon D P, Timothy H, Hussey P J, et al.2009. Enzyme activities and subcellular localization of members of the Arabidopsis glutathione transferase superfamily[J]. Journal of Experimental Botany, 60(4): 1207-1218. [21] Edwards R, Dixon DP, Walbot V.2000. Plant glutathione S-transferases: Enzymes with multiple functions in sickness and in health[J]. Trends in Plant Science, 5(5): 193-198. [22] Hahn K, Strittmatter G.2010. Pathogen-defence gene prp1-1 from potato encodes an auxin-responsive glutathione S-transferase[J]. European Journal of Biochemistry, 226(2): 619-626. [23] Hossain M, Bhattacharjee S, Armin S, et al.2015. Hydrogen peroxide priming modulates abiotic oxidative stress tolerance: Insights from ROS detoxification and scavenging[J]. Frontiers in Plant Science, 6(1): 420. [24] Li Z K, Chen B, Li X X, et al.2019. A newly identified cluster of glutathioneS-transferase genes provides Verticillium wilt resistance in cotton[J]. The Plant Journal, 98(2): 213-227. [25] Li X J, Wang Y, Liu F, et al.2020. Transcriptomic analysis of Glycine soja and G. max seedlings and functional characterization of GsGSTU24 and GsGSTU42 genes under submergence stress[J]. Environmental and Experimental Botany, 171: 103963. [26] McFadden H G, Wilson I W, Chapple R M, et al.2006. Fusarium wilt (Fusarium oxysporum f. sp. vasinfectum) genes expressed during infection of cotton (Gossypium hirsutum) dagger[J]. Molecular plant pathology 7(2): 87-101. [27] Moons A.2003. Osgstu3 and Osgtu4, encoding tau class glutathione S-transferases, are heavy metal and hypoxic stress induced and differentially salt stress-responsive in rice roots[J]. FEBS Letters, 553(3): 427-432. [28] Moons A.2005. Regulatory and functional interactions of plant growth regulators and plant glutathione S-transferases (GSTs)[J]. Vitamins & Hormones, 72: 155-202. [29] Sappl P G, Carroll A J, Clifton R, et al.2010. The Arabidopsis glutathione transferase gene family displays complex stress regulation and co-silencing multiple genes results in altered metabolic sensitivity to oxidative stress[J]. The Plant Journal, 58(1): 53-68. [30] Soranzo N, Gorla M S, Mizzi L, et al.2004. Organisation and structural evolution of the rice glutathione S-transferase gene family[J]. Molecular Genetics & Genomics, 271(5): 511-521. |
|
|
|