|
|
Effect of Heterologous Expression of StSWEET16b Gene on Fructose Content and Resistance to Late Blight in Tobacco (Nicotiana tabacum) |
FAN Xi-De1, HE Miao-Miao1,2, YE Guang-Ji1,2, WANG Jian1,2, ZHOU Yun1,2,* |
1 Academy of Agriculture and Forestry Sciences,Qinghai University, Xining 810016, China; 2 Qinghai Academy of Agriculture and Forestry Sciences/State key Laboratory of Plateau Ecology and Agriculture, Qinghai University/Key Laboratory of Qinghai-Tibetan Plateau Biotechnology of Ministry of Education, Qinghai University/Key Laboratory of Potato Breeding of Qinghai, Xining 810016, China |
|
|
Abstract Sugars will eventually be exported transporters (SWEETs), a novel family of membrane-transporters widely distributed in eukaryotes, which performed essential roles in plant growth and development processes, such as phloem loading for long distance sugar transport, hormone transport, pollen development, fruit development, seed filling and plant-pathogen interactions. To analyze the function of StSWEET16b in sugar transport and plant-pathogen interactions, in this study, potato (Solanum tuberosum 'Qingshu 9') was used as material, after treated with sucrose, fructose and glucose individually, the expression of StSWEET16b was analyzed by qRT-PCR in the leaves of 'Qingshu 9'. The expression pattern of StSWEET16b was changed under 3% sucrose, fructose and 3glucose treatments respective, suggesting that may be involved in the translocation of sucrose, fructose and glucose in potato. By analyzing the growth condition of the transgenic tobacco (Nicotiana benthamiana) on different sugar medium and measuring the contents of sucrose, fructose and glucose in the plants, it was found that the transgenic tobacco grew weaker than the wild-type plants on glucose and sucrose medium, and the contents of sucrose and glucose in the transgenic plants were lower than those in the wild-type plants. However, transgenic tobacco grew significantly better than wild-type plants on fructose medium (P<0.05), and the fructose content of transgenic plants was higher than that of wild-type plants, indicated that the heterologous expression of StSWEET16b in tobacco could promote fructose transport, and inhibit the transport of sucrose and glucose. Transient expression results showed that StSWEET16b gene was involved in the interaction between tobacco and Phytophthora infestans. Furthermore, transient expression of StSWEET16b enhanced the resistance to P. infestans in tobacco, resulting in inhibiting the expansion of late blight disease spots. It inhibited the expansion of the disease spot of P. infestans and improved the disease resistance of the plant. The results suggesed that StSWEET16b protein played an important role in sugar transport and plant-pathogen interactions for resistance to late blight. This study provides a theoretical basis for improving potato quality and breeding of disease-resistant varieties.
|
Received: 05 January 2021
|
|
Corresponding Authors:
* zhouyun75@163.com
|
|
|
|
[1] 程杰, 张新圣, 李安琪, 等. 2018. 番茄果实成熟过程中SlSWEET7a的功能分析[J]. 中国农业科学, 51(15): 138-148. (Cheng J, Zhang X S, Li A Q, et al.2018. Functional snalysis of SlSWEET7a gene during maturation of tomato fruits[J]. Scientia Agracultura Sinica, 51(15): 138-148.) [2] 虢成莹. 2018. 菠萝SWEET基因家族的进化和功能分析[D]. 硕士学位论文, 山东农业大学, 导师: 杨龙, pp. 1-37. (Fu C H.2018. The evolution and function of the pineapple SWEET genes families[D]. Thesis for M.S., Shandong Agricultural University, Supervisor: Yang L, pp. 1-37.) [3] 韩佳轩, 姜晶. 2015. 拟南芥、水稻和番茄SWEET/MtN3/s aliva基因家族的分析[J]. 分子植物育种, 13(03):581-588. (Han J X, Jiang J.2015. Genome-wide analysis of SWEET gene family in Arabidopsis thaliana, Oryza sativa and Lycopersicum esculentum[J]. Molecular Plant Breeding, 13(03): 581-588.) [4] 何佳, 黄学勇, 关跃峰, 等. 2010. 拟南芥MtN3/saliva基因家族分析[J]. 上海师范大学学报(自然科学版), 39(03): 290-298. (He J, Huang X Y, Guan X F, et al.2010. Genome-wide analysis of MtN3/saliva protein family in Arabidopsis thaliana[J]. Journal of Shanghai Normal University (NaturalSciences), 39(03): 290-298.) [5] 李明. 2019. 马铃薯糖转运蛋白StSWEET基因的克隆及功能分析[D]. 硕士学位论文, 青海大学, 导师: 周云, pp. 1-42. (Li M.2019. Cloning and functional analysis of sugars will eventually be exported transporters (StSWEET) in potato[D]. Thesis for M.S., Qing Hai University, Supervisor: Zhou Y, pp. 1-42.) [6] 刘畅, 姜晶, 韩晓雪, 等. 2014. 植物中SWEET基因家族研究进展[J]. 植物生理学报, 050(009): 1367-1373. (Liu C, Jiang J, Han X X, et al.2014. Research advances in SWEET gene family in plants[J]. Acta Phytopathologica Sinica, 050(009): 1367-1373.) [7] 路静, 马齐军, 康慧, 等. 2019. 苹果糖转运蛋白基因MdSWEET1在番茄中异源表达提高其耐盐性[J]. 园艺学报, 46(3): 433-443. ( Lu J, Ma Q J, Kang H, et al.2019. Ectopic expressing MdSWEET1 in tomato enhanced salt tolerance[J]. Acta Horticulturae Sinica, 46(3): 433-443.) [8] 杨官显, 许海峰, 张静, 等. 2018. 苹果糖转运蛋白基因MdSWEET17的功能鉴定[J]. 植物生理学报, 054(011): 1737-1745. (Yang G X, Xu H F, Zhang J, et al.2018. Functional identification of a sugar transporter gene MdSWEET17 in apple[J]. Plant Physiology Journal, 054(11): 1737-1745.) [9] 远俊虎, 丁一娟, 杨文静, 等. 2019. 利用TRV-HIGS技术鉴定核盘菌致病相关的分泌蛋白基因[J]. 中国农业科学, 52(23): 4274-4284. (Yuan J H, Ding Y J, Yang W J, et al.2019. Identification of genes encoding secretory proteins related to the pathogenicity of sclerotinia sclerotinia sclerotiorum using TRV-HIGS[J]. Scientia Agracultura Sinica, 52(23): 4274-4284.) [10] 张璐, 李明, 叶广继, 等. 2019. 马铃薯糖转运蛋白基因的克隆及表达分析[J]. 西北植物学报, 39(9): 1528-1533. (Zhang L, Li M, Ye G J, et al.2019. Cloning and expression analysis of a sugar transporter pritein gene in potato[J]. Acta Botanica Boreali-Occidentalia Sinica, 39(9): 1528-1533.) [11] 赵文婷, 魏建和, 刘晓东, 等. 2013. 植物瞬时表达技术的主要方法与应用进展[J]. 生物技术通讯, 24(02): 294-300. (Zhao W T, Wei J H, Liu X D, et al.2013. Advance of the main methods and applications of plant transient expression system[J]. Letters in Biotechnology, 24(02): 294-300.) [12] Braun D M, Slewinski T L.2009. Genetic control of carbon partitioning in grasses: Roles of sucrose transporters and tie-dyed loci in phloem loading[J]. Plant Physilogy, 149: 71-81. [13] Chen L Q, Hou B H, Lalonde S, et al.2010. Sugar transporters for intercellular exchange and nutrition of pathogens[J]. Nature, 468(7323): 527-532. [14] Chen L Q, Qu X Q, Hou B H, et al.2012. Sucrose efflux mediated by SWEET proteins as a key step for phloem transport[J]. Science, 335(6065): 207-211. [15] Chong J, Piron M C, Meyer S, et al.2014. The SWEET family of sugar transporters in grapevine: VvSWEET4 is involved in the interaction with Botrytis cinerea[J]. Journal of Experimental Botany, 65(22): 6589-6601. [16] Eom J S, Chen L Q, Sosso D, et al.2015. SWEETs, transporters for intracellular and intercellular sugar translocation[J]. Current Opinion in Plant Biology, 25: 53-62. [17] Guan Y F, Huang X Y, Zhu J, et al.2008. RUPTURED POLLEN GRAIN1,a member of the MtN3/saliva gene family, is crucial for exine pattern formation and cell integrity of microspores in Arabidopsis[J]. Plant Physiology, 147(2): 852-863. [18] Guo W J, Nagy R, Chen H Y, et al.2014. SWEET17, a facilitative transporter, mediates fructose transport across the tonoplast of Arabidopsis roots and leaves[J]. Plant Physiology, 164(2): 777-789. [19] Kay S, Hahn S, Marois E, et al.2009. Detailed analysis of the DNA recognition motifs of the Xanthomonas typeⅢ effectors AvrBs3 and AvrBs3Δrep16[J]. Plant Journal, 59(6): 859-871. [20] Kocal N, Sonnewald U, Sonnewald S.2008. Cell wall-bound invertase limits sucrose export and is involved in symptom development and inhibition of photosynthesis during compatible interaction between tomato and Xanthomonas campestris pv. vesicatoria[J]. Plant Physiology, 148(3): 1523-1536. [21] Roitsch T, Mari-Cruz González.2004. Function and regulation of plant invertases: Sweet sensations[J]. Trends in Plant Science, 9(12): 606-613. [22] Yamada K, Osakabe Y, Mizoi J, et al.2009. Functional analysis of an Arabidopsis thaliana abiotic stress-inducible facilitated diffusion transporter for monosaccharides[J]. Journal of Biological Chemistry, 85(2): 1138-1146. [23] Yuan M, Zhao J, Huang R, et al.2014. Rice MtN3/saliva/SWEET gene family: Evolution,expression profiling, and sugar transport[J]. Journal of Integrative Plant Biology, 06(v.56): 45-56. [24] Yu X, Wang X, Wang C, et al.2010. Wheat defense genes in fungal (Puccinia striiformis) infection[J]. Functional Integrative Genomics, 10(2): 227-239. |
|
|
|