|
|
The Research Progress and Application of Genomic-wide Selection in Ruminant Genetics and Breeding |
ZHANG Shun-Jin1, KOU Hao-Wei1, DING Xiao-Ting1, LIU Xian2, CAI Wen-Wen3, ZHANG Zi-Jing4, SHI Qiao-Ting4, RU Bao-Rui2, LEI Chu-Zhao1, HUANG Yong-Zhen1,* |
1 College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; 2 Henan Provincial Animal Husbandry General Station, Zhengzhou 450008, China; 3 Hebi Animal Health Supervision Institute, Hebi 458030, China; 4 Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China |
|
|
Abstract As a new breeding method, genomic-wide selection has revolutionized the dairy industry and played an important role in the genetic breeding of other animals. With the improvement of livestock reference genome, the development of genotyping chip technology and sequencing technology, genomic selection will have a greater impact on animal breeding. In this paper, the principles and methods, advantages and disadvantages and influencing factors of whole-genome selection, as well as its application in ruminants such as cattle and sheep were briefly reviewed. The problems and challenges of whole-genome selection were discussed, and the development prospects of whole-genome selection were prospected, which provides a new idea for breeding improvement of ruminants such as cattle and sheep.
|
Received: 30 June 2020
Published: 01 March 2021
|
|
Corresponding Authors:
*hyzsci@nwafu.edu.cn
|
|
|
|
[1] 尹立林, 马云龙, 项韬, 等. 2019. 全基因组选择模型研究进展及展望[J]. 畜牧兽医学报, 50(2): 233-242. (Yin L L, Ma Y L, Xiang T, et al.2019. The progress and prospect of genomic selection models[J]. Acta Veterinaria et Zootechnica Sinica, 50(2): 233-242.) [2] 张统雨, 魏霞, 张勤, 等. 2018. 基因组选择在羊育种中的应用研究进展[J]. 畜牧兽医学报, 2018, 49(12): 2535-2542. (Zhang T Y, Wei X, Zhang Q, et al.2018. Progress on application of genomic selection in sheep and goat breeding[J]. Acta Veterinaria et Zootechnica Sinica, 49(12): 2535-2542.) [3] 李恒德, 包振民, 孙效文. 2012. 基因组选择及其应用[J]. 遗传, 33(12): 1308-1316. (Li H D, Bao Z M, Sun X W.2011. Genomic selection and its application[J]. Yi Chuan, 33(12): 1308-1316.) [4] Amann R, DeJarnette J.2012. Impact of genomic selection of AI dairy sires on their likely utilization and methods to estimate fertility: A paradigm shift[J]. Theriogenology, 77(5): 795-817. [5] Berry D P, Garcia J F, Garrick D J.2016. Development and implementation of genomic predictions in beef cattle[J]. Animal Frontiers, 6(1): 32-38. [6] Blasco A, Pena R.2018. Current status of genomic maps: genomic selection/GBV in livestock. Animal Biotechnology 2[M]. Springer, pp. 61-80. [7] Carillier C, Larroque H, Palhiere I, et al.2013. A first step toward genomic selection in the multi-breed French dairy goat population[J]. Journal of Dairy Science, 96(11): 7294-7305. [8] Daetwyler H D, Hickey J M, Henshall J M, et al.2010. Accuracy of estimated genomic breeding values for wool and meat traits in a multi-breed sheep population[J]. Animal Production Science, 50: 1004-1010. [9] Daetwyler H D, Kemper K E, van der Werf J H J, et al.2012. Components of the accuracy of genomic prediction in a multi-breed sheep population[J]. American Society of Animal Science, 50: 3375-3384. [10] Dassonneville R, Brondum R F, Druet T, et al.2011. Effect of imputing markers from a low-density chip on the reliability of genomic breeding values in Holstein populations[J]. Journal of Dairy Science, 94(7): 3679-3686. [11] García-Ruiz A, Cole J B, VanRaden P M, et al.2016. Changes in genetic selection differentials and generation intervals in US Holstein dairy cattle as a result of genomic selection[J]. Proceedings of the National Academy of Sciences of the USA, 113(28): E3995-E4004. [12] Garner J B, Douglas M L, Williams S R, et al.2016. Genomic selection improves heat tolerance in dairy cattle[J]. Science Report, 6: 34114. [13] Haas Y, Windig J J, Calus M P, et al.2011. Genetic parameters for predicted methane production and potential for reducing enteric emissions through genomic selection[J]. Journal of Dairy Science, 94(12): 6122-6134. [14] Habier D, Fernando R L, Dekkers J C.2007. The impact of genetic relationship information on genome-assisted breeding values[J]. Genetics, 177(4): 2389-2397. [15] Hamidi Hay E, Roberts A.2017. Genomic prediction and genome-wide association analysis of female longevity in a composite beef cattle breed[J]. Journal of Animal Science, 95(4): 1467. [16] Hayes B, Donoghue K, Reich C, et al.2016. Genomic heritabilities and genomic estimated breeding values for methane traits in Angus cattle[J]. Journal of Animal Science, 94(3): 902-908. [17] Hayes B J, Bowman P J, Chamberlain A J, et al.2009. Invited review: Genomic selection in dairy cattle: Progress and challenges[J]. Journal of Dairy Science, 92(2): 433-443. [18] Hayes B J, Lewin H A, Goddard M E.2013. The future of livestock breeding: genomic selection for efficiency, reduced emissions intensity, and adaptation[J]. Trends in Genetics, 29(4): 206-214. [19] Hazel L N, Lush J L.1942. The efficiency of three methods of selection[J]. Journal of Heredity, 33(11): 393-399. [20] Henderson C R.1953. Estimation of variance and covariance components[J]. Biometrics, 9(2): 226-252. [21] Huang Y, Hickey J M, Cleveland M A, et al.2012. Assessment of alternative genotyping strategies to maximize imputation accuracy at minimal cost[J]. Genetics Selection Evolution, 44(1): 25. [22] Knol E F, Nielsen B, Knap P W.2016. Genomic selection in commercial pig breeding[J]. Animal Frontiers, 6(1): 15-22. [23] Lourenco D, Tsuruta S, Fragomeni B, et al.2015. Genetic evaluation using single-step genomic best linear unbiased predictor in American Angus[J]. Journal of Animal Science, 93(6): 2653-2662. [24] Luan T, Woolliams J A, Lien S, et al.2009. The accuracy of genomic selection in Norwegian red cattle assessed by cross-validation[J]. Genetics, 183(3): 1119-1126. [25] Lund M S, de Roos A P, de Vries A G, et al.2011. A common reference population from four European Holstein populations increases reliability of genomic predictions[J]. Genetics Selection Evolution, 43(1): 43. [26] Magalhaes A F B, Schenkel F S, Garcia D A, et al.2019. Genomic selection for meat quality traits in Nelore cattle[J]. Meat Science, 148: 32-37. [27] Meuwissen T, Hayes B, Goddard M.2016. Genomic selection: A paradigm shift in animal breeding[J]. Animal Frontiers, 6(1): 6-14. [28] Meuwissen T H, Hayes B, Goddard M E.2001. Prediction of total genetic value using genome-wide dense marker maps[J]. Genetics, 157: 1819-1829. [29] Mrode R, Tarekegn G M, Mwacharo J M, et al.2018. Invited review: Genomic selection for small ruminants in developed countries: How applicable for the rest of the world?[J]. Animal, 12(7): 1333-1340. [30] Mucha S, Mrode R, MacLaren-Lee I, et al.2015. Estimation of genomic breeding values for milk yield in UK dairy goats[J]. Journal of Dairy Science, 98(11): 8201-8208. [31] Navajas E, Pravia M I, Lema M, et al.2014. Genetic improvement of feed efficiency and carcass and meat quality of Hereford cattle by genomics[C]//60th International Congress of Meat Science and Technology. 17. [32] Nguyen T T T, Bowman P J, Haile-Mariam M, et al.2016. Genomic selection for tolerance to heat stress in Australian dairy cattle[J]. Journal of Dairy Science, 99(4): 2849-2862. [33] Pryce J E, Wales W J, De Haas Y, et al.2014. Genomic selection for feed efficiency in dairy cattle[J]. Animal, 8(1): 1-10. [34] Rupp R, Mucha S, Larroque H, et al.2016. Genomic application in sheep and goat breeding[J]. Animal Frontiers, 6(1): 39-44. [35] Solberg T, Sonesson A, Woolliams J, et al.2008. Genomic selection using different marker types and densities[J]. Journal of Animal Science, 86(10): 2447-2454. [36] Soller M.1978. The use of loci associated with quantitative effects in dairy cattle improvement[J]. Animal Science, 27(10): 133-139. [37] Tsairidou S, Woolliams J A, Allen A R, et al.2014. Genomic prediction for tuberculosis resistance in dairy cattle[J]. PLoS One, 9(5): e96728. [38] Van Eenennaam A L, Weigel K A, Young A E, et al.2014. Applied animal genomics: Results from the field[J]. Annual Review of Animal Biosciences, 2: 105-139. [39] Villumsen T M, Janss L, Lund M S.2009. The importance of haplotype length and heritability using genomic selection in dairy cattle[J]. Journal of Animal Breeding and Genetics, 126(1): 3-13. [40] Wallen S E, Lillehammer M, Meuwissen T H E.2017. Strategies for implementing genomic selection for feed efficiency in dairy cattle breeding schemes[J]. Journal of Dairy Science, 100(8): 6327-6336. [41] Weigel K A, de Los Campos G, Vazquez A I, et al.2010. Accuracy of direct genomic values derived from imputed single nucleotide polymorphism genotypes in Jersey cattle[J]. Journal of Dairy Science, 93(11): 5423-5435. [42] Weigel K A, VanRaden P M, Norman H D, et al.2017. A 100-Year Review: Methods and impact of genetic selection in dairy cattle-From daughter-dam comparisons to deep learning algorithms[J]. Journal of Dairy Science, 100(12): 10234-10250. [43] Weller J I, Ezra E, Ron M.2017. Invited review: A perspective on the future of genomic selection in dairy cattle[J]. Journal of Dairy Science, 100(11): 8633-8644. [44] Wiggans G R, Cole J B, Hubbard S M, et al.2017. Genomic selection in dairy cattle: The USDA experience[J]. Annual Review of Animal Biosciences, 5: 309-327. [45] Wiggans G R, Vanraden P M, Cooper T A.2011. The genomic evaluation system in the United States: Past, present, future[J]. Journal of Dairy Science, 94(6): 3202-3211. [46] Zhang Y D, Johnston D J, Bolormaa S, et al.2014. Genomic selection for female reproduction in Australian tropically adapted beef cattle[J]. Animal Production Science, 54(1): 16. |
|
|
|