|
|
Effects of Different Domains on Activity of Wheat (Triticum aestivum) TaNRX1-D |
CHENG Jie1,*, SONG Tian-Qi1,*, WEI Fan1, LI Rui-Bo1, YU Ming1, HAO Xi-Ying1, TIAN Shu-Yuan1, QIN Wu-Sa1, YANG Song-Jie2,**, ZHANG Xiao-Ke1,** |
1 College of Agronomy, Northwest A&F University, Yangling 712100, China;
2 School of Modern Agriculture & Biotechnology, Ankang University, Ankang 725000, China; |
|
|
Abstract Thioredoxin (TRX) contains highly conserved typical domains with oxidative active site WCG/PPC, and is a class of small molecular multifunctional proteins widely existing in organisms. Nucleoredoxin (NRX), a member of the TRX superfamily, was contained multiple domains typical and atypical of TRX, and has the potential of redox activity. According to bioinformatics analysis, the Triticum aestivum TaNRX1-D contains 3 TRX domains: domain 1 contained WCPPC, domain 2 contained GYPPV and domain3 contained WCGPC, while the domain 2 did not harbour such an activity site. In order to further explore the different structural domain influence on TaNRX1-D protein activity, this experiment truncated the protein sequence at different lengths according to the predicted physicochemical properties of the TaNRX1-D domain protein. The corresponding protein products were obtained by constructing prokaryotic expression vectors and purified, respectively. TaNRX1-D possesses TRX activity in vitro. Compared with 1.0 µmol/L or 2.5 µmol/L, 5.0 µmol/L TaNRX1-D displayed high insulin reduction activity in a dose-dependent manner. Among the 5 domains of TaNRX1-D, the insulin reduction activity of the 5 domains as follows: NRX-D3 (NRX-domain3)>NRX-D1 (NRX-domain1)>NRX-D2 (NRX-domain2), and each of the 5 domains alone was less active than the NRX-DQ protein. The analysis of three structural domains inside the protein on the reducing activity of TaNRX1-D protein will provide a new reference for further understanding of the function of TaNRX1-D protein.
|
Received: 27 June 2020
Published: 01 March 2021
|
|
Corresponding Authors:
**akxyysj@163.com; zhangxiaoke66@126.com *The authors who contributed equally
|
|
|
|
[1] 胡松青, 黄政, 刘光, 等. 2017. 结构域对小麦蛋白质二硫键异构酶性质的影响[J].华南理工大学学报(自然科学版), 45(11): 92-99.
(Hu S Q, Huang Z, Liu G, et al.2017. Effects of domains of wheat protein disulfide isomerase on its properties[J]. Journal of South China University of Technology (Natural Science Edition), 45(11): 92-99.)
[2] 李梦园, 樊亚栋, 张新宁, 等. 2019. 小麦TaTrxh9基因的序列特征及其对渗透胁迫的响应[J].西北植物学报, 39(5): 896-903.
(Li M Y, Fan Y D, Zhang N X, et al.2019. Sequence characteristics of TaTrxh9 gene and response to osmotic stresses in wheat[J]. Acta Biotanica Boreali-occidentala sinice, 39(5): 896-903.)
[3] 唐威华, 张景六, 王宗阳, 等. 2000. SDS-PAGE法测定His-tag融合蛋白分子量产生偏差的原因[J]. 植物生理学报, 26(1): 65-69.
(Tang W H, Zhang J L, Wang Z Y, et al.2000. The Cause of deviation made in determining the molecular weight of His-tag fusion proteins by SDS-PAGE[J]. Acta Phytophysiologica Sinica, 26(1): 65-69.)
[4] 田淑媛, 程洁, 杨杰, 等. 2019. 小麦核氧还蛋白TaNRX1与TaPDI、TaTRX-h、TaPP2Ac的互作分析及抗旱功能研究[J]. 农业生物技术学报, 27(11): 1901-1911.
(Tian S Y, Cheng J, Yang J, et al.2019. Interaction analysis of TaNRX1 with TaPDI, TaTRX-h and TaPP2Ac and drought resistance study[J]. Journal of Agricultural Biotechnology, 27(11): 1901-1911.)
[5] 王一杰, 辛岭, 胡志全, 等. 2018. 我国小麦生产、消费和贸易的现状分析[J]. 中国农业资源与区划, 39(5): 36-45.
(Wang Y J, Xin L, Hu Z Q, et al.2018. Current situation of production, consumption and trade of wheat in China[J]. Chinese Journal of Agricultural Resources and Regional Planning, 39(5): 36-45.)
[6] 卫博翔, 焦雄. 2019. 基于结构域理化性质的蛋白质相互作用方向预测[J]. 太原理工大学学报, 50(4): 536-540.
(Wei B X, Jiao X.2019. Prediction of protein interaction direction based on domain physicochemical properties[J]. Journal of Taiyuan University of Technology, 50(4): 536-540.)
[7] 袁晓波, 常亚南, 王苗苗, 等. 2019. 小麦核氧还蛋白基因TaNRX1的序列特征及表达分析[J]. 麦类作物学报, 39(10): 1139-1145.
(Yuan X B, Chang Y N, Wang M M, et al.2019. Sequence characteristic and expression patterns of a nucleoredoxin gene TaNRX1 in wheat[J]. Journal of Triticeae Crops, 39(10): 1139-1145.)
[8] 张帆, 蒋雷, 鞠丽萍, 等. 2014. 一个普通小麦Trx超家族新基因TaNRX的克隆与抗旱相关标记开发[J]. 作物学报, 40(1): 29-36.
(Zhang F, Jiang L, Ju L P, et al.2014. Cloning a novel gene TaNRX of Trx superfamily and developing its molecular markers related to drought resistance in common wheat[J]. Acta Agronomica Sinica, 40(1): 29-36.)
[9] 张文静, 陈海超, 郭利建, 等. 2019. 小麦TaWTG1的原核表达、纯化及去泛素化酶活性分析[J].农业生物技术学报, 27(10): 1711-1719.
(Zhang W J, Chen H C, Guo L J, et al.2019. Prokaryotic expression, purification and deubiquitinase activity assay of TaWTG1 in wheat (Triticumaestivum L.)[J]. Journal of Agricultural Biotechnology, 27(10): 1711-1719.)
[10] 张小莹, 唐玉瑾, 王刚, 等.2015. 葡萄硫氧还蛋白基因(VvTrx)的克隆、表达和原核表达[J]. 农业生物技术学报, 23(9): 1131-1140.
(Zhang X Y, Tang Y J, Wang G, et al.2015. Cloning, expression and fusion expression of thioredoxin gene (Trx) in grape (Vitisvinifera)[J]. Journal of Agricultural Biotechnology, 23(9): 1131-1140.)
[11] Arnér E S, Holmgren A.2000. Physiological functions of thioredoxin and thioredoxin reductase[J]. European Journal of Biochemistry, 267(20): 6102-6109.
[12] Bainor A, Chang L, McQuade T J, et al.2011. Bicinchoninic acid (BCA) assay in low volume[J]. Analytical Biochemistry, 410(2): 310-312.
[13] Balsera M, Buchanan B B, et al.2019. Evolution of the thioredoxin system as a step enabling adaptation to oxidative stress[J]. Free Radical Biology and Medicine, 140(3): 28-35.
[14] Carvalho A P, Fernandes P A, Ramos M J.2006. Similarities and differences in the thioredoxin superfamily[J]. Progress in Biophysics and Molecular Biology, 91(3): 229-248.
[15] Funato Y, Miki H.2007. Nucleoredoxin, a novel hioredoxin family member involved in cell growth and differentiation[J]. Antioxidants and Redox Signaling, 9(8): 1035-1057.
[16] Funato Y, Miki H.2010. Redox regulation of Wnt signalling via nucleoredoxin[J]. Free Radical Research, 44(4): 379-388.
[17] Guo H, Wang S, Xu F, et al.2013. The role of thioredoxin h in protein metabolism during wheat (Triticum aestivum L.) seed germination[J]. Plant Physiology Biochemistry, 67(30): 137-143.
[18] Holmgren A.1989. Thioredoxin and glutaredoxin systems[J]. The Journal of Biological Chemistry, 264(24): 13963-13966.
[19] Jacquot J P, Rouhier N, Gelhaye E.2002. Redox control by dithiol-disulfide exchange in plants: I. the chloroplastic systems[J]. Annals of the New YorkAcademy of Sciences, 973(1): 508-519.
[20] Jeng M F, Campbell A P, Begley T, et al.1994. High-resolution solution structures of oxidized and reduced Escherichia coli thioredoxin[J]. Structure, 2(9): 853-868.
[21] Kurooka H, Kato K, Minoguchi S, et al.1997. Cloning and characterization of the nucleoredoxin gene that encodes a novel nuclear protein related to thioredoxin[J]. Genomics, 39(3): 331-339.
[22] Laloi C, Mestres-Ortega D, Marco Y, et al.2004. The Arabidopsis cytosolic thioredoxin h5 gene induction by oxidative stress and its w-box-mediated response to pathogen elicitor[J]. Plant Physiology, 134(3): 1006-1016.
[23] Laughner B J, Sehnke P C, Ferl R J.1998. A novel nuclear member of the thioredoxin super family[J]. Plant Physiology, 118(3): 987-996.
[24] Li Y B, Han L B, Wang H Y, et al.2016. The thioredoxin GbNRX1 plays a crucial role in homeostasis of apoplastic reactive oxygen species in response to verticillium dahliae infection in cotton[J]. Plant Physiology, 170(4): 2392-2406.
[25] Li Y C, Ren J P, Cho M J, et al.2009. The level of expression of thioredoxin is linked to fundamental properties and applications of wheat seeds[J]. Molecular Plant, 2(3): 430-441.
[26] Marchal C, Delorme-Hinoux V, Bariat L, et al.2014. NTR/NRX define a new thioredoxin system in the nucleus of Arabidopsis thaliana cells[J]. Molecular Plant, 7(1): 30-44.
[27] Mössner E, Huber-Wunderlich M, Glockshuber R.1998. Characterization of Escherichia coli thioredoxin variants mimicking the active-sites of other thiol/disulfide oxido reductases[J]. Protein Science, 7(5): 1233-1244.
[28] Schultz L W, Chivers P T, Raines R T.1999. The CXXC motif: Crystal structure of an active-site variant of Escherichia coli thioredoxin[J]. Acta Crystallographica Section D Structural Biology, 55(9): 1533-1538.
[29] Sevilla F, Camejo D, Ortiz-Espin A, et al.2015. The thioredoxin/peroxiredoxin/sulfiredoxin system: Current overview on its redox function in plants and regulation by reactive oxygen and nitrogen species[J]. Journal of Experimental Botany, 66(10): 2945-2955.
[30] Wong J H, Cai N, Balmer Y, et al.2004. Thioredoxin targets of developing wheat seeds identified by complementary proteomic approaches[J]. Phytochemistry, 65(11): 1629-1640.
[31] Zhang Z, Liu X, Li R, et al.2018. Identification and functional analysis of a protein disulfide isomerase (AtPDI1) in Arabidopsis thaliana[J]. Frontiers in Plant Science, 9(2018): 913-923. |
[1] |
ZHANG Na, ZHANG Xi-Lan, ZHAO Ming-Hui, QIAO Wen-Chen, FU Xiao-Yi, HE Ming-Qi, SUN Li-Jing, LI Hui, ZHAO Yue-Xing, JI Jun. Detection of Genetic Loci of Spike Number per Plant Response to Nitrogen Stress in Wheat (Triticum aestivum)[J]. 农业生物技术学报, 2021, 29(3): 435-442. |
|
|
|
|