|
|
Polymorphism of 3'-UTR Region of BMPR-IB Gene and Its Correlation with Litter Size in Four Sheep (Ovis aries) Varieties |
SUN Wei-Bo1, ZHANG Li-Ping1*, LANG Xia2, ZHANG Xiao-Yan1, JIN Ji-Peng1, ZHANG Zi-Qi1, XIAO Fan1, LEI Zhi-Hui1 |
1 College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; 2 Institute of Animal and Pasture Science and Green Agriculture, Gansu Academy of Agricultural Science, Lanzhou 730070, China |
|
|
Abstract In order to explore the genetic effects of the untranslated region polymorphism of bone morphogenetic protein receptor IB (BMPR-IB) gene on the reproductive performance of sheep (Ovis aries), Multiple Hu Sheep (HM), Singleton Mongolian Sheep (MS), Twins Mongolian Sheep (MT), Singletons Oula Sheep (ZS), Twins Oula Sheep (ZT) and Singletons Australian Sheep (AS) was selected in this study to detect SNPs in the 3'-UTR of BMPR-IB gene by DNA sequencing, the correlation between polymorphism loci and litter size was also studied. Two mutation sites of 1339 (G/A) and 1354 (A/G) were detected at 1 145~1 500 bp in the 3'-UTR region of BMPR-IB gene, and further analysis was performed on the 1354 locus (corresponding to the 3019 locus in the mRNA sequence of BMPR-IB gene NM_001009431.1). The results showed that wild genotype AA, heterozygous mutant genotype AG and homozygous mutant genotype GG were detected in MT and ZT, the dominant allele was A; wild genotype AA and heterozygous mutation genotype AG were detected in MS, ZS and AS, the dominant allele was A; heterozygous mutation genotype AG and homozygous mutation genotype GG were detected in HM, the dominant allele was G. The result of polymorphism information content (PIC) analysis showed that HM, MT, MS, ZS and AS were in low polymorphism (PIC<0.25); and ZT was in moderate polymorphism (0.25<PIC<0.5). There was a significant difference in the 1354 locus of 3'-UTR region of BMPR-IB gene among the multiple-lamb, twins-lamb and singletons-lamb populations (P<0.05). The genotype of AG and GG had significant effects on the fecundity in HM, MT and ZT. These results suggested that the 1354 locus in the 3'-UTR region of BMPR-IB gene might be regarded as a molecular genetic marker locus for multiple-lamb and twins-lamb in sheep. This study provides a theoretical scientific basis for breeding sheep with high fecundity.
|
Received: 21 October 2019
|
|
Corresponding Authors:
* zhanglp512@163.com
|
|
|
|
[1] 杜丽. 2018. 绵羊BMPR-IB 和GDF9 基因SNPs及GDF9 基因mRNA表达量分析[D]. 硕士学位论文, 甘肃农业大学, 导师:张利平, pp. 39-41. (Du L. 2018. SNPs analysis of BMPR-IB and GDF9 genes in sheep and analysis of GDF9 mRNA expression level[D]. Thesis for M.S., Gansu Agricultural University, Suppervisor: Zhang L P, pp.39-41.) [2] 葛燕, 张家骅. 2006. 骨形态发生蛋白在动物繁殖上的研究进展[J]. 动物医学进展, 27(6):33-37. (Ge Y, Zhang J H. 2006. Progress on bone morphogenetic proteins on animal reproduction[J]. Progress in Veterinary Medicine, 27(6):33-37. ) [3] 贾建磊, 张利平, 丁强, 等. 2016. 绵羊BMPR-IB 基因第7 外显子多态性与产羔性状的相关性研究[J]. 西北农林科技大学学报(自然科学版), 44(1): 7-13. (Jia J L, Zhang L P, Ding Q, et al. 2016. Correlation between polymorphism of BMPR-IB gene exon7 and lambing performance of sheep[J]. Journal of Northwest A & F University (Natural Science Edition), 44(1): 7-13.) [4] 贾立华, 储明星, 陈宏权, 等. 2008. 绵羊骨形态发生蛋白受体IB(BMPR-IB)基因部分3′非翻译区的多态性分析[J]. 农业生物技术学报, 2008(01): 47-50. (Jia L H, Chu M X, Chen H Q, et al. 2008. Polymorphism analysis of partial 3′UTR of the bone morphogenetic protein receptor IB (BMPR-IB) gene in sheep[J]. Journal of Agric-ultural Biotechnology, 2008(01): 47-50.) [5] 马晓明. 2017. 绵羊BMPR-IB、ADAMTS-1 基因SNPs 及ADAMTS-1 基因在不同组织间mRNA 表达量的分析[D]. 硕士学位论文, 甘肃农业大学, 导师: 张利平, pp. 26-27, 38-39. (Ma X M. 2017. Analysis of BMPR-IB, AD-AMTS-1 gene SNPs and ADAMTS-1 gene mRNA expression in different tissues of sheep[D]. Thesis for M. S.,Gansu Agricultural University, Suppervisor: Zhang L P, pp. 26-27, 38-39.) [6] 邵勇钢, 米日尼萨汗·库尔班, 刘武军. 2012. 策勒黑羊BM-PR-IB 基因多态性与产羔数的相关性研究[J]. 中国畜牧兽医, 39(6): 221-223. (Shao Y G, Mirinisahan K, Liu W J, 2012. Study on the relationship between the polymorphism of BMPR-IB gene and litter size in Xinjiang Cele Black Sheep[J]. Chinese Animal Husbandry & Veterinary Medicine, 39(6): 221-223.) [7] 孙红霞, 田秀娥, 王永军. 2009. BMPR-IB、BMP15 和GDF9基因作为滩羊繁殖性状主效候选基因的研究[J]. 西北农业学报, 18(5): 17-21+70. (Sun H X, Tian X E, Wang Y J. 2009. BMPR-IB, BMP15 and GDF9 as candidate genes for prolific trait in Tan Sheep[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 18(5): 17-21+70.) [8] 田雄. 2002. 提高农村养羊户羊群繁殖力的八条措施[J]. 四川畜牧兽医, (06): 38-39. (Tian X. 2002. Eight measures to improve the reproductive capacity of rural sheep farmers[J]. SiChuan Animal & Veterinary sciences, (06): 38-39.) [9] 王红娜. 2012. 应用FRET探针分型技术快速检测羊BMPRIB基因多态性研究[D]. 硕士学位论文, 河北农业大学,导师: 张英杰, pp. 15-17. (Wang H N. 2012. Study on rapid detection of BMPR-IB gene polymorphism in sheep by FRET probe genotyping technology[D]. Thesis for M. S., Hebei Agricultural University, Suppervisor: Zhang Y J, pp. 15-17.) [10] 王钧. 2013. 5 个绵羊品种BMPR-IB 基因多态性的研究[D].硕士学位论文, 甘肃农业大学, 导师: 张利平, pp. 33-37. (Wang J. 2013. Polymorphism of BMPR-IB gene in five sheep breeds[D]. Thesis for M.S., Gansu Agricultural University, Suppervisor: Zhang L P, pp. 33-37.) [11] 闫亚东, 储明星, 曾勇庆, 等. 2005. 小尾寒羊和湖羊高繁殖力候选基因BMPR-IB 的研究[J]. 农业生物技术学报,(1): 66-71. (Yan Y D, Chu M X, Zeng Y Q, et al. 2015. Study on bone morphogenetic protein receptor IB as a candidate gene for prolificacy in Small Tail Han Sheep and Hu Sheep[J]. Journal of Agricultural Biotechnology,(1): 66-71.) [12] 杨华, 杨永林, 刘守仁, 等. 2010. 绵羊BMPR-IB 基因单核苷酸多态性分析[J]. 西北农业学报, 19(09): 7-11. (Yang H, Yang Y L, Liu S R, et al. 2010. Analysis of single nucleotide polymorphism of BMPR-IB gene in sheep[J]. 19(09): 7-11.) [13] 赵有璋. 2013. 中国养羊学[M]. 北京, 中国农业出版社, pp.86-88. (Zhao Y Z. 2013. Chinese Sheep Science[M]. Agricultural Press, Beijing, China, pp.87-88.) [14] 朱韶华, 张利平, 马晓明, 等. 2018. 绵羊BMP-15 基因在不同产羔性状母羊中的表达量差异及分析[J]. 基因组学与应用生物学, 37(05): 1853-1858. (Zhu S H, Zhang L P, Ma X M, et al. 2018. Analysis and differences of sheep BMP-15 gene expression in ewes with different lambing traits[J]. Genomics and Applied Biology, 37(05): 1853-1858.) [15] Berkovits B D, Mayr C. 2015. Alternative 3'-UTRs act as scaffolds to regulate membrane protein localization[J]. Nature 522(7556): 363-367. [16] Chen C Y, Chen S T, Juan H F, et al. 2012. Lengthening of 3'-UTR increases with morphological complexity in animal evolution[J]. Bioinformatics 28(24): 3178-3181. [17] Chu M X, Zhao X H, Zhang Y J, et al. 2010. Polymorphisms of BMPR-IB gene and their relationship with litter size in goats[J]. Molecular Biology Reports, 37(8): 4033-4039. [18] Kirkbride K C, Townsend T A, Bruinsma M W, et al. 2008. Bone morphogenetic proteins signal through the transforming growth factor-beta type III receptor[J]. Journal of Biological Chemistry, 283(12): 7628. [19] Lander E S, Linton L M, Birren B, et al. 2001. Initial sequencing and analysis of the human genome[J]. Nature 409(6822): 860-921. [20] Mayr C. 2017. Regulation by 3'-untranslated regions[J]. Annual Review of Genetics, 51(1): 171-194. [21] Mayr C. 2018. What are 3' UTRs doing?[J]. Cold Spring Harbor Perspectives in Biology, 11(10): a034728. [22] Mulsant P, Lecerf F, Fabre S, et al. 2001. Mutation in bone morphogenetic protein receptor-IB is associated with increased ovulation rate in Booroola Merino ewes[J]. Proceedings of the National Academy of Sciences of the USA, 98(9): 5104-5109. [23] Souza C. 2001. The Booroola (FecB) phenotype is associated with a mutation in the bone morphogenetic receptor type 1B (BMPR1B) gene[J]. Journal of Endocrinology, 169(2): R1-R6. [24] Wilson T. 2001. Highly prolific Booroola sheep have a mutation in the intracellular kinase domain of bone morphogenetic protein IB receptor (ALK-6) that is expressed in both oocytes and granulosa cells[J]. Biology of Reproduction, 64(4): 1225-1235. |
|
|
|