|
|
Genetic Analysis and Mapping of Rf-I, an Inhibitor of Fertility Restorer 3 Gene for CMS-RN in Soybean (Glycine max) |
LI Yong-Kuan1,2,3, ZHANG Jing-Yong2,3, ZHAO Guo-Long2,3, LI Rong1,2,3, LIN Chun-Jing2,3, Zhao Li-Mei2,3, PENG Bao2,3,*, ZHANG Chun-Bao1,2,3,* |
1 College of Agriculture, Jilin Agriculture University, Changchun 130118, China; 2 Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun 130033, China; 3 Soybean National Engineering Research Center, Changchun 130033, China |
|
|
Abstract The "three-line" hybrid breeding method is one of the important ways to utilize crop heterosis. When the hybrid combinations were prepared, it was found that although some male-sterile lines performed well agronomically, the fertility in their F1 generation could not be fully restored. Therefore, it was speculated that there may be a gene encoding for a suppressor for the restoration of male sterility. The speculated suppressor coding gene was named as Rf-I, an inhibitor of fertility restorer gene. In this study, the RN-type cytoplasmic male sterility (CMS) soybean (Glycine max) line JLCMS89A and restorer line JLR92 were used as genetic materials. First, the genetic analysis was performed by using F1 and backcross (BC1) generation populations. Then, bulk segregant analysis (BSA) high-throughput sequencing was combined with simple sequence repeat (SSR) molecular marker technology was used to preliminarily map the Rf-I gene. The results showed that the restoration suppression trait was controlled by a single dominant gene located in the nuclear genome of the sterile line. The Rf-I was initially mapped between 38.387 and 39.890 Mb at the Chromosome 9, within the range of about 1.503 Mb. This study provides theoretical and experimental basis for subsequent research on the fine mapping of Rf-I gene and characterization of its function. In addition, the result can guide the choice of the RN-type soybean cytoplasmic male sterile lines to make hybrid soybean.
|
Received: 02 December 2019
|
|
Corresponding Authors:
*cbzhang@cjaas.com;pb@cjaas.com
|
|
|
|
[1] 丁孝羊. 2017. 大豆RN型细胞质雄性不育系及保持系cDNA_AFLP分析[D]. 硕士学位论文. 吉林农业大学, 赵丽梅, pp. 16. (Ding X Y. 2017. cDNA-AFLP analysis of the RN-type cytoplasmic male sterile line and its maintainer line in soybean (Glycine max L.)[D]. Thesis for M.S., Jilin Agriculture University, Supervisor: Zhao L M, pp.16.) [2] 官春云, 尹明智. 2015. 利用SSR标记定位油菜细胞质雄性不育系1193A的恢复基因[J]. 植物遗传资源学报, 16(2): 364-367. (Guan C Y, Yin M Z.2015. Mapping of restoring gene for cytoplasmic male sterile line 1193A in Brassica napus L. using SSR markers[J]. Journal of Plant Genetic Resources, 16(2): 364-367.) [3] 郭秀娟, 孙万仓, 杨建春. 2015. 甘蓝型油菜细胞质雄性不育系L04-05A恢复基因的SSR标记[J]. 山西农业科学, 43(7): 788-791. (Guo X J, Sun W C, Yang J C.2015. SSR markers of B. napus L. cytoplasmic male sterile lines L04-05A restoring genes[J]. Journal of Shanxi Agricultural Sciences, 43(7): 788-791.) [4] 胡锦国, 李泽炳. 1985. 四种水稻细胞质雄性不育系不育性遗传的初步研究[J].华中农学院学报,4(1):15-22. (Hu J G, Li B Z.1985. Preliminary study on the sterility inheritance of four rice cytoplasmic male sterile lines[J]. Journal of Huazhong Agricultural College, 4(1): 12-22.) [5] 蒋爽, 骆军, 王晓庆, 等. 2019. 基于基因组重测序数据高效筛选梨SSR标记多态性引物[J]. 果树学报, 36(2): 129-136. (Jiang S, Luo J, Wang X Q, et al.2019. A study on efficient screening of the primers for selecting polymorphic SSR markers based on the re-sequencing data in Pyrus[J]. Journal of Fruit Science, 36(2): 129-136.) [6] 景润春, 何予卿, 黄青阳, 等. 2000.水稻野败型细胞质雄性不育恢复基因的ISSR和SSLP标记分析[J]. 中国农业科学, 33(2): 10-15. (Jing R C, He Y Q, Huang Q Y, et al.2000. Analysis of the fertility restorer gene in the wild abortive (WA) type cytoplasmic male sterility (CMS) system with the ISSR and SSLP markers[J]. Scientia Agruicultura Sinica, 33(2): 10-15.) [7] 李广贤, 姚方印, 庄杰云, 等. 2006.水稻细胞质雄性不育的育性遗传及恢复基因的定位研究进展[J]. 杂交水稻, (3): 1-6. (Li G X, Yao F Y, Zhuang J Y, et al. 2006. Inheritance of fertility restoration and molecular mapping of restoring genes of CMS in rice[J]. Hybrid Rice, (3): 1-6.) [8] 刘毅, 余新桥, 张安宁, 等. 2016. 高通量基因组测序在农作物基因定位与发掘中的应用[J]. 上海农业学报, 32(6): 171-175. (Liu Y, Yu X Q, Zhang A N, et al.2016. Application of high-throughput genome sequencing in crop gene discovery and mapping[J]. Acta Agriculturae Shanghai, 32(6): 171-175.) [9] 陆才瑞, 邹长松, 宋国. 2015. 高通量测序技术结合正向遗传学手段在基因定位研究中的应用[J].遗传, 37(8): 765-7786. (Lu C R, Zou C S, Song G.2015. Recent progress in gene mapping through high-throughput sequencing technology and forward genetic approaches[J]. Hereditas, 37(8): 765-7786.) [10] 孙寰, 赵丽梅, 黄梅. 1998. 细胞质雄性不育大豆及生产大豆杂交种的方法.中国, ZL97112173.7[P]. (Sun H, Zhao L M, Huang M. 1998. Cytoplasmic male sterile soybean (Glycine max L.) and method for producing hybrid soybean seed. China, ZL97112173.7[P].) [11] 田郎. 1994. 几种水稻同核异质雄性不育系育性遗传的比较研究[J]. 四川农业大学学报, 12(1): 16-19. (Tian L.1994. Comparative study on fertility inheritance of several rice heteroplasmic male sterile lines[J]. Journal of Sichuan Agricultural University, 12(1): 16-19.) [12] 张井勇, 孙寰, 赵丽梅, 等. 2010. 大豆RN型不育胞质不育与恢复类型研究[J]. 大豆科学, 29(4): 559-564. (Zhang J Y, Sun H, Zhao L M, et al.2010. Classification of male sterile lines with RN sterile cytoplasm and their restorers[J]. Soybean Science, 29(4): 559-564.) [13] 张磊, 戴欧和, 黄志平, 等. 1999. 大豆质核互作M型雄性不育系的选育及其育性表现[J]. 中国农业科学, 32(4): 34-38. (Zhang L, Dai O H, Huang Z P, et al.1999. Selection and fertility performance of soybean sterile line with M-type male sterility[J]. Scientia Agruicultura Sinica, 32(4): 34-38.) [14] 张尧锋, 张冬青, 余华胜, 等. 2018. 基于极端混合池(BSA)全基因组重测序的甘蓝型油菜有限花序基因定位[J]. 中国农业科学, 51(16): 3029-3039. (Zhang Y F, Zhang D Q, Yu H S, et al.2018. Location and mapping of the determinate growth habit of Brassica napus by bulked segregant analysis (BSA) using whole genome re-sequencing[J]. Scientia Agruicultura Sinica, 51(16): 34-38.) [15] 郑瑞丰, 夏胜平, 陈立云. 2010. 水稻野败型恢复系恢复基因的遗传及等位性分析[J]. 湖南农业科学, (23): 1-5. (Zheng R F, Xia S P, Chen L Y. 2010. Inheritance and allelic analysis of restoring genes in wild abortion type rice[J]. Hunan Agricultural Sciences, (23): 1-5.) [16] Brown G G, Formanova N, Jin H,et al.2003. The radish Rfo restorer gene of Ogura cytoplasmic male sterility encodes a protein with multiple pentatricopeptide repeats[J]. The Plant Journal, 35: 262-272. [17] Cai J, Liao Q P, Dai Z J, et al.2013. Allelic differentiations and effects of the Rf3 and Rf4 genes on fertility restoration in rice with wild abortive cytoplasmic male sterility[J]. Biologia Plantarum,57(2): 274-280. [18] Gai J Y, Cui Z L, Ji D F, et al.1995. A report on the nuclear cytoplasmic male sterility from a cross between two soybean cultivars[J]. Soybean Genetics Newsletter, 22(1): 55-58. [19] Hu J, Wang K, Huang W, et al.2012. The rice pentatricopep-tide repeat protein Rf5 restores fertility in HongLian cytoplasmic male-sterile lines via a complex with theglycine-rich protein GRP162[J]. The Plant Cell, 24: 109-122. [20] Hu Y M, Tang J H, Yang H, et al.2006. Identification and mapping of Rf-I an inhibitor of the Rf5 restorer gene for CMS-C in maize (Zea mays L.)[J]. Theoretical and Applied Genetics, 113: 357-360. [21] Huang W C, Yu C C, Hu J, et al.2015. Pentatricopeptide-repeat family protein Rf6 functions with hexokinase 6 to rescue rice cytoplasmic male sterility[J]. Proceedings of the National Academy of Science of the USA, 112(48): 14984-14989. [22] Kaul M L H.1988. Male Sterility in Higher Plants[M]. Berlin, Springe-Verlag, pp. 2-5. [23] Liu X Q, Xu X, Tan Y Pet al.2004. Inheritance and molecular mapping of two fertility-restoring loci for Honglian gametophytic cytoplasmic male sterility in rice (Oryzasativa L.)[J]. Molecular Genetics and Genomics, 271(5): 586-594. [24] Liu Z, Liu P W, Long F R,et al.2012. Fine mapping and candidate gene analysis of the nuclear restorer gene Rfp for pol CMS in rapeseed (Brassica napus L.)[J]. Theoretical and Applied Genetics, 125(4): 773-779. [25] Pomraning K R, Smith K M, Freitag M.2011. Bulk segregant analysis followed by high-throughput sequencing reveals the Neurospora cell cycle gene, ndc-1, to be allelic with the gene for ornithine decarboxylase, spe-1[J]. Eukaryot Cell, 10(6): 724-733. [26] Vedel F, Pla M, Vitart V, et al.1994. Molecular basis of nuclear and cytoplasmic male sterility in higher plants[J]. Plant Physiology and Biochemistry Paris, 32: 601-618. [27] Wei C, Wang H, Heng S, et al.2019. Construction of restorer lines and molecular mapping for restorer gene of hau cytoplasmic male sterility in Brassica napus[J]. Theoretical and Applied Genetics, 6(4): 1-15. [28] Wenger J W, Schwartz K, Sherlock G.2010. Bulk segregant analysis by high-throughput sequencing reveals a novel xylose utilization gene from Saccharomyces cerevisiae[J].PLoS Genetics, 6(5): e1000942. |
|
|
|