|
|
Research Advances in the Genetics and Breeding of Wheat (Triticum aestivum) Resistance to Fusarium Head Blight |
NIU Hao1, JIANG Yu-Mei2, NIU Ji-Shan2, * |
1 Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China;
2 National Centre of Engineering and Technological Research for Wheat, Henan Agricultural University, Zhengzhou 450046, China |
|
|
Abstract Wheat (Triticum aestivum) is an important staple crop in the world. The stable and high yield wheat production is fatal for crop security in China. Fusarium head blight (FHB) is a major spike disease, which threatens wheat production and food security. The research advances of the damage of FHB, screening and identification of the germplasm resources resistant to FHB, resistance types, heredity and mapping of the resistance genes, disease resistance molecular mechanism, breeding, and transgene are summarized in this paper. It is also proposed that it's necessary to discover the molecular requirements for pathogenicity of Fusarium spp. and the molecular mechanisms of host resistance against FHB for a breakthrough in future wheat resistance breeding. The paper will provide a theory basis for developing more effective novel techniques using new strategies for future wheat disease resistance breeding, which based on absolutely or highly preventing Fusarium invading.
|
Received: 06 August 2019
|
|
Corresponding Authors:
* jsniu@263.net
|
|
|
|
1 董杰, 张金良, 杨建国, 等. 2016. 北京市及河北省小麦赤霉病菌群体遗传结构及生物学特征[J]. 植物保护, 42(6): 116-121.
(Dong J, Zhang J L, Yang J G, et al.2016. Population genetic structure and biological characteristics of Fusarium graminearum on wheat in Beijing and Hebei[J]. Plant Protection, 42(6): 116-121.)
2 蒋国梁, 吴兆苏. 1989. 小麦矮秆早×苏麦3号杂交组合对赤霉病的抗扩展性遗传和几个农艺性状相关的分析[J]. 南京农业大学学报, 12(4): 122-123.
(Jiang G L, Wu Z S.1989. The heredity of the resistance to Fusarium head blight spread and association analysis of several agronomy traits for the cross of wheat Aiganzao × Sumai 3[J]. Journal of Nanjing Agricultural University, 12(4): 122-123.)
3 刘大钧. 1994. 向小麦转移外源抗病性的回顾与展望[J]. 南京农业大学学报, 17(3): 1-7.
(Liu D J.1994. Retrospect and prospect on transfer of disease resistance from alien species into common wheat[J]. Journal of Nanjing Agricultural University, 17(3): 1-7.)
4 刘万才, 刘振东, 黄冲, 等. 2016. 近10年农作物主要病虫害发生危害情况的统计和分析[J]. 植物保护, 42(5): 1-9.
(Liu W C, Liu Z D, Huang C, et al.2016. Statistics and analysis of crop yield losses caused by main diseases and insect pests in recent 10 years[J]. Plant Protection, 42(5): 1-9.)
5 刘宗镇, 汪志远, 赵文俊.1985. 小麦品种资源抗赤霉病性研究[J]. 上海农业学报, 1(2): 75-84.
(Liu Z Z, Wang Z Y, Zhao W J.1985. Study on the resistance to Fusarium head blight of wheat genetic resources[J]. Acta Agriculturae Shanghai, 1(2): 75-84.)
6 卢丽斌, 陈莉, 宛琼, 等. 2016. 安徽省小麦赤霉病菌群体遗传多样性AFLP分析[J]. 麦类作物学报, 36(12): 1681-1687.
(Lu L B, Chen L, Wan Q, et al.2016. Analysis of genetic diversity of Fusarium graminearum in Anhui province by AFLP[J]. Journal of Triticeae Crops, 36(12): 1681-1687.)
7 陆成彬, 张伯桥, 高德荣, 等. 2010 抗赤霉病小麦新品种扬麦18的选育研究[J]. 中国农学通报, 26(10): 146-14.
(Lu C B, Zhang B Q, Gao D R, et al.2010. Research on breeding for Fusarium head blight resistance variety Yangmai 18[J]. Chinese Agricultural Science Bulletin, 26(10): 146-14.)
8 马鸿翔, 陆维忠. 2010. 小麦赤霉病抗性改良研究进展[J]. 江苏农业学报, 26(1): 197-20.
(Ma H X, Lu W Z.2010. Progress on genetic improvement for resistance to Fusarium head blight in wheat[J]. Jiangsu Journal of Agricultural Science, 26(1): 197-20.)
9 全国小麦赤霉病研究协作组. 1984. 小麦品种资源抗赤霉病性鉴定研究[J]. 作物品种资源, 4: 2-7.
(National Collaborative Group for Wheat Fusarium Head Blight Research.1984. Identification of the wheat genetic resources for the resistance to Fusarium Head Blight[J]. Crop Genetic Resources, 4: 2-7.)
10 万永芳, 颜济, 杨俊良, 等. 小麦近缘野生植物的赤霉病抗性研究[J]. 植物病理学报, 1997, 27(2): 107-111.
(Wan Y F, Yan J, Yang J L, et al.1997. Study on wild relatives of wheat for resistance to head scab[J]. Acta Phytopathologica Sinica, 27(2): 107-111.)
11 王玉, 张其昌. 1985. 小麦品种资源赤霉病抗源鉴定筛选[J]. 湖北农业科学, (8): 20-22.
(Wang Y, Zhang Q C. 1985. Screening and identification of wheat genetic resources for the resistance to Fusarium head blight[J]. Hubei Journal of Agricultural Science, (8): 20-22.)
12 吴郁文, 任树新, 刘春光, 等. 1998. 异源细胞质对小麦赤霉病抗性的效应[J]. 科学通报, 43(5): 510-514.
(Wu Y W, Ren S X, Liu C G, et al.1998. Effect of the alien cytoplasm on wheat resistance to Fusarium head blight[J]. Science Bulletin, 43(5): 510-514.)
13 杨继芝, 王继师, 龚国淑, 等. 2010. 不同禾谷镰刀菌对小麦产量及其主要性状的影响[J]. 河南农业科学, 9: 91-94.
(Yang J Z, Wang J S, Gong G S, et al.2010. Effect of different Fusarium graminearum on yield and its important components of wheat[J]. Henan Journal of Agricultural Science, 9: 91-94.)
14 叶兴国, Sato S, 徐惠君, 等. 2005. BCL、RIP细胞凋亡基因向小麦中的导入和赤霉病抗性鉴定[J]. 作物学报, 31(11): 1389-1393.
(Ye X G, Sato S, Xu H J, et al.2005. Transformation and identification of BCL and RlP genes related to cell apodosis into wheat mediated by Agrobacterium[J]. Acta Agronomica Sinica, 31(11): 1389-1393.)
15 张旭, 邢锦城, 马鸿翔, 等. 2010. 江淮流域小麦赤霉病菌的遗传多样性[J]. 江西农业大学学报, 32(6): 1146-1151.
(Zhang X, Xing J C, Ma H X, et al.2010. Genetic diversity of Fusarium spp. isolates in Yangtze-Huaihe river valley[J]. Acta Agricuhurae Universitatis Jiangxiensis, 32(6): 1146-1151.)
16 张勇, 张伯桥, 高德荣, 等. 2005a. 小麦赤霉病抗源H35的遗传模式分析[J]. 麦类作物学报, 25(4): 39-43.
(Zhang Y, Zhang B Q, Gao D R, et al.2005a. Analysis on genetic model of wheat scab resistant germplasm H35[J]. Journal of Triticeae Crops, 25(4): 39-43.)
17 张勇, 张伯桥, 高德荣, 等. 2005b. 小麦赤霉病抗源N553的主基因+多基因遗传分析[J].中国农学通报, 21(6): 305-307.
(Zhang Y, Zhang B Q, Gao D R, et al.2005b. Major genes plus polygenes inheritance of wheat scab in resource N553[J]. Chinese Agricultural Science Bulletin, 21(6): 305-307.)
18 赵凯铭, 华荣, 周轩正. 2013. 小麦赤霉病抗源鉴定研究进展[J]. 安徽农业科学, 41(14): 6259-6261.
(Zhao K M, Hua R, Zhou X Z.2013. Research progress on identification of germplasm for resistance to Fusarium head blight in wheat[J]. Journal of Anhui Agricultural Science, 41(14): 6259-6261.)
19 AlTaweel K, Amarasinghe C C, Brûlé-Babel A L, et al.2017. Gene expression analysis of host-pathogen interaction between wheat and Fusarium graminearum[J]. European Journal of Plant Pathology, 148: 617-629.
20 Audenaert K, De Boevrec M Vanheule A, et al.2013. Mycotoxin glucosylation in commercial wheat varieties: Impact on resistance to Fusarium graminearum under laboratory and field conditions[J]. Food Control, 34: 756-762.
21 Audenaert K, Monbaliu S, Deschuyffeleer N, et al.2012. Neutralized electrolyzed water efficiently reduces Fusarium spp. in vitro and on wheat kernels but can trigger deoxynivalenol (DON) biosynthesis[J]. Food Control, 23: 515-521.
22 Bai G, Shaner G.2004. Management and resistance in wheat and barley to Fusarium head blight[J]. Annual Review of Phytopathology, 42: 135-161.
23 Bai G, Su Z, Cai J.2018. Wheat resistance to Fusarium head blight[J]. Canadian Journal of Plant Pathology, 40(3): 336-346.
24 Balconi C, Lanzanova C, Conti E, et al.2007. Fusarium head blight evaluation in wheat transgenic plants expressing the maize b-32 antifungal gene[J]. European Journal of Plant Pathology, 117:129-140.
25 Basnet B R, Glover K D, Ibrahim A M H, et al.2012. A QTL on chromosome 2DS of 'Sumai 3' increases susceptibility to Fusarium head blight in wheat[J]. Euphytica, 186: 91-101.
26 Bernardo A, Bai G, Guo P, et al.2007. Fusarium graminearum-induced changes in gene expression between Fusarium head blight-resistant and susceptible wheat cultivars[J]. Functional & Integrative Genomics, 7: 69-77.
27 Bovill W D, Horne M, Herde D, et al.2010. Pyramiding QTL increases seedling resistance to crown rot (Fusarium pseudograminearum) of wheat (Triticum aestivum)[J]. Theoretical and Applied Genetics, 121:127-136.
28 Brisco E I, Brown L K, Olson E L.2017. Fusarium head blight resistance in Aegilops tauschii[J]. Genetic Resources and Crop Evolution, 64: 2049-2058.
29 Buerstmayr H, Lemmens M,·Hartl L, et al.2002. Molecular mapping of QTLs for Fusarium head blight resistance in spring wheat. I. resistance to fungal spread (Type II resistance)[J]. Theoretical and Applied Genetics, 104: 84-91.
30 Buerstmayr M, Buerstmayr H.2015. Comparative mapping of quantitative trait loci for Fusarium head blight resistance and anther retention in the winter wheat population Capo × Arina[J]. Theoretical and Applied Genetics, 128: 1519-1530.
31 Cai J, Bai G.2014. Quantitative trait loci for Fusarium head blight resistance in Huangcandou × 'Jagger' wheat population[J]. Crop Science, 54: 2520-2528.
32 Cainong J C, Bockus W W, Feng Y, et al.2015. Chromosome engineering, mapping, and transferring of resistance to Fusarium head blight disease from Elymus tsukushiensis into wheat[J]. Theoretical and Applied Genetics, 128: 1019-1027.
33 Cativelli M, Lewis S, Appendino M L.2013. A Fusarium head blight resistance quantitative trait locus on chromosome 7D of the spring wheat cultivar Catbird[J]. Crop Science, 53: 1464-1471.
34 Chen P D, Liu W X, Yuan J H, et al.2005. Development and characterization of wheat-Leymus racemosus translocation lines with resistance to Fusarium head blight[J]. Theoretical and Applied Genetics, 111: 941-948.
35 Cheng W, Song X S, Li H P, et al.2015. Host-induced gene silencing of an essential chitin synthase gene confers durable resistance to Fusarium head blight and seedling blight in wheat[J]. Plant Biotechnology Journal, 13: 1335-1345.
36 Chu C, Niu Z, Zhong S, et al.2011. Identification and molecular mapping of two QTLs with major eVects for resistance to Fusarium head blight in wheat[J]. Theoretical and Applied Genetics, 123: 1107-1119.
37 Cuthbert P A, Somers D J, Brulé-Babel A.2007. Mapping of Fhb2 on chromosome 6BS: A gene controlling Fusarium head blight field resistance in bread wheat (Triticum aestivum L.)[J]. Theoretical and Applied Genetics, 114: 429-437.
38 David R F, BozorgMagham A E, Schmale III D G, et al.2016. Identification of meteorological predictors of Fusarium graminearum ascospore release using correlation and causality analyses[J]. European Journal of Plant Pathology, 145: 483-492.
39 del Blanco I A, Frohberg R C, Stack R W, et al.2003. Detection of QTL linked to Fusarium head blight resistance in Sumai 3-derived North Dakota bread wheat lines[J]. Theoretical and Applied Genetics, 106: 1027-1031.
40 Del Ponte E M, Garda-Buffon J, Badiale-Furlong E.2012. Deoxynivalenol and nivalenol in commercial wheat grain related to Fusarium head blight epidemics in southern Brazil[J]. Food Chemistry, 132: 1087-1091.
41 Dhokane D, Karre S, Kushalappa A C, et al.2016. Integrated metabolo-transcriptomics reveals Fusarium head blight candidate resistance genes in wheat QTL-Fhb2[J]. PLOS ONE, 11(5): e0155851.
42 Ding L, Xu H, Yi H, et al.2011. Resistance to hemi-biotrophic F. graminearum infection is associated with coordinated and ordered expression of diverse defense signaling pathways[J]. PLOS ONE, 6: e19008.
43 Duan Z, Lv G, Shen C, et al.2014. The role of jasmonic acid signaling in wheat (Triticum aestivum L.) powdery mildew resistance reaction[J]. European Journal of Plant Pathology, 140: 169-183.
44 Foroud N A, Ouellet T, Laroche A, et al.2012. Differential transcriptome analyses of three wheat genotypes reveal different host response pathways associated with Fusarium head blight and trichothecene resistance[J]. Plant Pathology, 61: 296-314.
45 Freire L, Sant'Ana A S.2018. Modified mycotoxins: An updated review on their formation, detection, occurrence, and toxic effects[J]. Food and Chemical Toxicology, 111: 189-205.
46 Gottwald S, Samans B, Lück S, et al.2012. Jasmonate and ethylene dependent defence gene expression and suppression of fungal virulence factors: Two essential mechanisms of Fusarium head blight resistance in wheat?[J]. BMC Genomics, 13: 369.
47 Gunupuru L R, Perochon A, Doohan F M.2017. Deoxynivalenol resistance as a component of FHB resistance[J]. Tropical Plant Pathology, 42: 175-183.
48 Guo J, Zhang X, Hou Y, et al.2015. High-density mapping of the major FHB resistance gene Fhb7 derived from Thinopyrum ponticum and its pyramiding with Fhb1 by marker-assisted selection[J]. Theoretical and Applied Genetics, 128: 2301-2316.
49 Guo P G, Bai G H, Shaner G E.2003. AFLP and STS tagging of a major QTL for Fusarium head blight resistance in wheat[J]. Theoretical and Applied Genetics, 106: 1011-1017.
50 Häberle J,·Holzapfel J, Schweizer G,et al.·2009. A major QTL for resistance against Fusarium head blight in European winter wheat[J]. Theoretical and Applied Genetics, 119: 325-332.
51 Harris L.J, Balcerzak M, Johnston A, et al.2016. Host-preferential Fusarium graminearum gene expression during infection of wheat, barley, and maize[J]. Fungal Biology, 120: 111-123.
52 He X, Singh P K, Duveiller E, et al.2013. Identification and characterization of international Fusarium head blight screening nurseries of wheat at CIMMYT, Mexico[J]. European Journal of Plant Pathology, 136: 123-134.
53 He X, Singh P K, Schlang N, et al.2014. Characterization of Chinese wheat germplasm for resistance to Fusarium head blight at CIMMYT, Mexico[J]. Euphytica, 195: 383-395.
54 Holzapfel J, Voss H H,·Miedaner T, et al.2008.·Inheritance of resistance to Fusarium head blight in three European winter wheat populations[J]. Theoretical and Applied Genetics, 117: 1119-1128.
55 Ito M, Sato I, Ishizaka M, et al.2013. Bacterial cytochrome P450 system catabolizing the Fusarium toxin deoxynivalenol[J]. Applied and Environmental Microbiology, 79: 1619-1628.
56 Jayatilake D V, Bai G H, Dong Y H.2011. A novel quantitative trait locus for Fusarium head blight resistance in chromosome 7A of wheat[J]. Theoretical and Applied Genetics, 122: 1189-1198.
57 Jia H Y, Zhou J Y, Xue S L, et al.2018. A journey to understand wheat Fusarium head blight resistance in the Chinese wheat landrace Wangshuibai[J]. The Crop Journal, 6(1): 48-59.
58 Jiang Y, Schulthess A W, Rodemann B, et al.2017. Validating the prediction accuracies of marker-assisted and genomic selection of Fusarium head blight resistance in wheat using an independent sample[J]. Theoretical and Applied Genetics, 130: 471-482.
59 Koch A, Kumar N, Weber L, et al.2013. Host-induced gene silencing of cytochrome P450 lanosterol C14α-demethylase encoding genes confers strong resistance to Fusarium species[J].Proceedings of the National Academy of Sciences of the USA, 110(48): 19324-19329.
60 Kruger W M, Pritsch C, Chao S, et al.2002. Functional and comparative bioinformatic analysis of expressed genes from wheat spikes infected with Fusarium graminearum[J]. Molecular Plant-Microbe Interactions, 15: 445-455.
61 Li G, Zhou J, JiaH, et al.2019a. Mutation of a histidine-rich calcium-binding-protein gene in wheat confers resistance to Fusarium head blight[J]. Nature Genetics, 51: 1106-1112.
62 Li T, Bai G, Wu S, et al.2011. Quantitative trait loci for resistance to Fusarium head blight in a Chinese wheat landrace Haiyanzhong[J]. Theoretical and Applied Genetics, 122: 1497-1502.
63 Li T, Zhang H, Huang Y, et al.2019b. Effects of the Fhb1 gene on Fusarium head blight resistance and agronomic traits of winter wheat[J]. The Crop Journal, 7(6): 799-808.
64 Liu S, Hall M D, Griffey C A, et al.2009. Meta-analysis of QTL associated with Fusarium head blight resistance in wheat[J]. Crop Science, 49:1955-1968.
65 Liu Y Y, Sun H Y, Li W, et al.2017. Fitness of three chemotypes of Fusarium graminearum species complex in major winter wheat-producing areas of China[J]. PLOS ONE, 12(3): e0174040.
66 Lu C, Xu R, Guo B, et al.2014. Detection of genetic markers of Am3/Laizhou 953 introgression lines for resistance to Fusarium head blight[J]. Agricultural Biotechnology, 3(6): 47-50.
67 Mackintosh C A, Lewis J, Radmer LE, et al.2007. Overexpression of defense response genes in transgenic wheat enhances resistance to Fusarium head blight[J]. Plant Cell Reports, 26: 479-488.
68 Makandar R, Nalam V J, Chaturvedi R, et al.2010. Involvement of salicylate and jasmonate signaling pathways in Arabidopsis interaction with Fusarium graminearum[J]. Molecular Plant-Microbe Interactions, 23: 861-870.
69 Miedaner T, Schulthess A W, Gowda M, et al.2017. High accuracy of predicting hybrid performance of Fusarium head blight resistance by mid-parent values in wheat[J]. Theoretical and Applied Genetics, 130: 461-470.
70 Muhovski Y, Batoko H, Jacquemin JM.2012. Identification, characterization and mapping of differentially expressed genes in a winter wheat cultivar (Centenaire) resistant to Fusarium graminearum infection[J]. Molecular Biology Reports, 39: 9583-9600.
71 Nowara D, Gay A, Lacomme C, et al.2010. HIGS: Host-induced gene silencing in the obligate biotrophic fungal pathogen Blumeria graminis[J]. Plant Cell, 22: 3130-3141.
72 Osman M, He X, Benedettelli S, et al.2016. Identification of new sources of resistance to fungal leaf and head blight diseases of wheat[J]. European Journal of Plant Pathology, 145: 305-320.
73 Powell J J, Carere J, Fitzgerald T L, et al.2017. The Fusarium crown rot pathogen Fusarium pseudograminearum triggers a suite of transcriptional and metabolic changes in bread wheat (Triticum aestivum L.)[J]. Annals of Botany, 119: 853-867.
74 Qi L L, Pumphrey M O, Friebe B, et al.2008. Molecular cytogenetic characterization of alien introgressions with gene Fhb3 for resistance to Fusarium head blight disease of wheat[J]. Theoretical and Applied Genetics, 117: 1155-1166.
75 Qi P F, Balcerzak M, Rocheleau H, et al.2016. Jasmonic acid and abscisic acid play important roles in host-pathogen interaction between Fusarium graminearum and wheat during the early stages of Fusarium head blight[J]. Physiological and Molecular Plant Pathology, 93: 39-48.
76 Qi P F, Johnston A, Balcerzak M, et al.2012. Effect of salicylic acid on Fusarium graminearum, the major causal agent of Fusarium head blight in wheat[J]. Fungal Biology, 116: 413-426.
77 Rocheleau H, Al-harthi R, Ouellet T.2019. Degradation of salicylic acid by Fusarium graminearum[J]. Fungal Biology, 123: 77-86.
78 Schuster R., Ellner F. M.2008. Level of Fusarium infection in wheat spikelets related to location and number of inoculated spores[J]. Mycotoxin Research, 24(2): 80-87.
79 Schweiger, W. Steiner B, Ametz C, et al.2013. Transcriptomic characterization of two major Fusarium resistance quantitative trait loci (QTLs), Fhb1 and Qfhs.ifa-5A, identifies novel candidate genes[J]. Molecular Plant Pathology, 14, 772-785.
80 Shi J R, Xu D H, Yang H Y, et al.2008. DNA marker analysis for pyramided of Fusarium head blight (FHB) resistance QTLs from different germplasm[J]. Genetica, 133: 77-84.
81 Sneller C H, Paul P, Guttieri M.2010. Characterization of resistance to Fusarium head blight in an eastern U.S. soft red winter wheat population. Crop Science, 50: 123-133.
82 Soltanloo H, Khorzoghi E G, Ramezanpour S S, et al.2010. The expression profile of Chi-1, Glu-2, Glu-3 and PR1.2 genes in Scab-resistant and susceptible wheat cultivars during infection by Fusarium graminearum[J]. Plant Omics Journal, 3(5): 162-166.
83 Soltanloo H, Khorzoghi E G, Ramezanpour S S, et al.2011. Genetic analysis of Fusarium head blight resistance in bread wheat[J]. Australasian Plant Pathology, 40: 453-460.
84 Steiner B, Buerstmayr M, Michel S, et al.2017. Breeding strategies and advances in line selection for Fusarium head blight resistance in wheat[J]. Tropical Plant Pathology, 42: 165-174.
85 Su Z, Bernardo A, Tian B, et al.2019. A deletion mutation in TaHRC confers Fhb1 resistance to Fusarium head blight in wheat[J]. Nature Genetics, 51: 1099-1105.
86 Su Z, Jin S, Zhang D, et al.2018, Development and validation of diagnostic markers for Fhb1 region, a major QTL for Fusarium head blight resistance in wheat[J]. Theoretical and Applied Genetics, 131: 2371-2380.
87 Wan Y F, Yan C, Yang J L, et al.1997. Evalution of Roegneria for resistance to head scab caused by Fusarium graminearum Schwabe[J]. Genetic Resources and Crop Evolution, 44(3): 211-215.
88 Wang L, Yuan J H, Bie T D, et al.2009. Cytogenetic and molecular identification of three Triticum aestivum-Leymus racemosus translocation addition lines[J]. Journal of Genetics and Genomics, 36: 379-385.
89 Xiang Y, Song M, Wei Z, et al.2011. A jacalin-related lectin-like gene in wheat is a component of the plant defence system[J]. Journal of Experimental Botany, 62(15): 5471-5483.
90 Xue S L, Li G Q, Jia H Y, et al.2010b. Fine mapping Fhb4, a major QTL conditioning resistance to Fusarium infection in bread wheat (Triticum aestivum L.)[J]. Theoretical and Applied Genetics, 121(1): 147-156.
91 Xue S, Li G, Jia H, et al.2010a. Marker-assisted development and evaluation of near-isogenic lines for scab resistance QTLs of wheat[J]. Molecular Breeding, 25: 397-405.
92 Xue S, Xu F, Tang M, et al.2011. Precise mapping Fhb5, a major QTL conditioning resistance to Fusarium infection in bread wheat (Triticum aestivum L.)[J]. Theoretical and Applied Genetics, 123: 1055-1063.
93 Yang F, Jacobsen S, Jørgensen H J L, et al.2013. Fusarium graminearum and its interactions with cereal heads: Studies in the proteomics era[J]. Frontiers in Plant Science, 4, 37.
94 Yang Z, Gilbert J, Fedak G, et al.2005. Genetic characterization of QTL associated with resistance to Fusarium head blight in a doubled-haploid spring wheat population[J]. Genome, 48: 189-196.
95 Zhang H, Van der Lee T, Waalwijk C, et al.2012. Population analysis of the Fusarium graminearum species complex from wheat in China show a shift to more aggressive isolates[J]. PLoS One, 7(2): e31722.
96 Zhang M, Zhang R, Yang J, et al.2010. Identification of a new QTL for Fusarium head blight resistance in the wheat genotype "Wangshuibai"[J]. Molecular Biology Reports, 37: 1031-1035.
97 Zhou, W, Kolb F L; Bai G,et al.2002. Genetic analysis of scab resistance QTL in wheat with microsatellite and AFLP markers[J]. Genome, 45: 719-727.
98 Zhu X, Li Z, Xu H, et al.2012. Overexpression of wheat lipid transfer protein gene TaLTP5 increases resistances to Cochliobolus sativus and Fusarium graminearum in transgenic wheat[J]. Functional & Integrative Genomics, 12: 481-488.
99 Zhu Z, Bonnett D, Ellis M, et al.2016. Characterization of Fusarium head blight resistance in a CIMMYT synthetic-derived bread wheat line[J]. Euphytica, 208: 367-375. |
[1] |
MENG Yu-Yu, LI Hu-Ying, XU Yuan, WEI Chun-Ru, FAN Run-Qiao, YU Xiu-Mei, ZHAO Wei-Quan, KANG Zhen-Sheng, LIU Da-Qun. Anti-stress Related Expression Analysis of TaSKP2A Gene in Wheat (Triticum aestivum) and Its Interaction Protein Screening[J]. 农业生物技术学报, 2020, 28(4): 571-581. |
|
|
|
|