|
|
Joint Multi-generations Genetic Analysis on Chilling Tolerance of Melon (Cucumis melo) Seedlings |
XU Xiao-Jun1, 2, LIANG Chang-Zhi1, LIU Hai-Ying1, ZHANG Gui-Lan2, LIU Ke-Ke1, YANG Lu-Ming1, HU Jian-Bin1, * |
1 Henan Key Laboratory of Fruit and Cucurbit Biology/College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China; 2 Zhengzhou Fruit Research Institute, Chinese Academy of Agriculture Sciences, Zhengzhou 450009, China |
|
|
Abstract Chilling tolerance is an important reflection on the ability of plant to adopt to low-temperature environment. Melon (Cucumis melo) is sensitive to low temperature, but the genetic pattern for chilling tolerance of melon seedlings remained unclear to date. In the present study, 2 melon inbred lines, which showed tolerance and sensitive to low temperature, were used to develop 6 generation populations for joint analysis, aiming to pinpoint the genetic model controlling chilling tolerance of melon seedlings and function model of the genes related to the trait. For this analysis, a mixed major-gene plus polygenes inheritance model was applied for pursuing the inheritance law of chilling tolerance of melon seedlings in spring and autumn. The results showed that chilling tolerance had typical characters of quantitative traits and tended to inherit dominantly. The optimal genetic pattern fitted 2 pairs of additive-dominance-epitasis major genes plus additive-dominant polygene model. Dominant effects played a main role for the major genes, meanwhile epistatic effects were also observed with these genes. All the gene effects were sensitive to environmental factors. Three generation populations (B1∶2, B2∶2 and F2∶3) had a major gene heritability of 73.22%, 92.36% and 95.57% in spring and 49.58%, 84.15% and 83.18% in autumn, respectively. The heritability of polygene was much low, only being detected in B1∶2 generation. Selection efficiency of major genes was much high in the early generations of F2 and its self-bred progenies as well as the backcross progenies (B2×sensitive parent). B1 generation could be more suitable for selection for polygenes. The present study could provide a reference for genetic improvement of chilling tolerance of melon seedlings.
|
Received: 23 September 2019
|
|
Corresponding Authors:
* jianbinhu@henau.edu.cn
|
|
|
|
1 曹锡文, 刘兵, 章元明. 2013. 植物数量性状分离分析Windows软件包SEA的研制[J]. 南京农业大学学报, 36(6): 1-6. (Cao X W, Liu B, Zhang Y M.2013. SEA: A software package of segregation analysis of quantitative traits in plants[J]. Journal of Nanjing Agricultural University, 36(6): 1-6.) 2 盖钧镒. 2005. 植物数量性状遗传体系的分离分析方法研究[J]. 遗传, 27(1): 130-136. (Gai J Y.2005. Segregation analysis of genetic system of quantitative traits in plants[J]. Hereditas, 27(1): 130-136.) 3 和红云, 薛琳, 田丽萍, 等. 2008. 低温胁迫对甜瓜幼苗根系活力及渗透调节物质的影响[J]. 石河子大学学报(自然科学版), 26(5): 583-586. (He H Y, Xue L, Tian L P, et al.2008. Effect of low temperature stress on root vigor and osmotic adjustment matter in muskmelon seedlings[J]. Journal of Shihezi University (Natural Science), 26(5): 583-586.) 4 李恒松, 朱文莹, 彭佳林, 等. 2015. 黄瓜耐冷性遗传分析与连锁标记筛选[J]. 上海交通大学学报(农业科学版), 33(1): 14-18. (Li H S, Zhu W Y, Peng J L, et al.2015. Inheritance analysis and screening of linked marker of chilling resistance in cucumber (Cucumis sativus L.)[J]. Journal of Shanghai Jiaotong University (Agricultural Science), 33(1): 14-18.) 5 李猛, 吕亭辉, 邢巧娟, 等. 2018. 瓜类蔬菜耐低温性评价与调控研究进展[J]. 园艺学报, 45(9): 132-148. (Li M, Lv T H, Xing Q J, et al.2018. Research progress on evaluation and regulation of chilling tolerance in cucurbitaceous vegetables[J], Acta Horticulturae Sinica, 45(9): 132-148.) 6 林德佩. 2010. 中国栽培甜瓜植物的起源、分类及进化[J]. 中国瓜菜, 23: 34-36. (Lin D P.2010. Origin classification and evolution for cultivated plants of Chinese melon[J]. China Cucurbits and Vegetables, 23(4): 34-36.) 7 刘次桃, 王威, 毛毕刚, 等. 2018. 水稻耐低温逆境研究: 分子生理机制及育种展望[J]. 遗传, 40(3): 171-185. (Liu C T, Wang W, Mao B G, et al., 2018. Cold stress tolerance in rice: Physiological changes, molecular mechanism, and future prospects[J]. Hereditas, 40(3): 171-185.) 8 苗永美, 高青海, 戈应祥, 等. 2013. 甜瓜耐低温鉴定指标的研究[J]. 安徽科技学院学报, 27(1): 39-44. (Miao Y M, Gao Q H, Ge Y X, et al.2013. Studies on identification indexes of low-temperature tolerance in melon[J]. Journal of Anhui Science and Technology University, 27(1): 39-44.) 9 钱春桃, 娄群峰, 陈劲枫. 2006. 我国甜瓜属蔬菜作物特异基因资源的挖掘和利用[J]. 中国蔬菜, (7): 30-32. (Qian C T, Lou C F, Chen J F. 2006. Discovery and utilization of specific gene resources in Cucumis vegetables[J]. China Vegetables, (7): 30-32.) 10 孙玉宏, 徐跃进, 彭金光, 等. 2004. 甜瓜耐冷性鉴定指标的筛选[J]. 中国蔬菜, (4): 7-10. (Sun Y H, Xu Y J, Peng J G, et al. 2004. Screening on identification indices of chilling tolerance in melon[J]. China Cucurbits and Vegetables, (4): 7-10.) 11 吴梅梅, 张显, 郑俊鶱, 等. 2014. 西瓜甜瓜抗寒性研究进展[J]. 中国瓜菜, 27(s): 1-5. (Wu M M, Zhang X, Zheng J Q, et al.2014. Research progress on cold resistance in watermelon and melon[J]. China Cucurbits and Vegetables, 27(s): 1-5.) 12 武雁军, 刘建辉. 2007. 低温胁迫对厚皮甜瓜幼苗抗寒性生理生化指标的影响[J]. 西北农林科技大学学报(自然科学版), 35(3): 139-143. (Wu Y J, Liu J H.2007. Effects of chilling stress on chill-resistance physiological and biochemical indexes of muskmelon seedlings[J]. Journal of Northwest A & F University (Natural Science), 35(3): 139-143.) 13 徐小军, 张桂兰, 周亚峰, 等. 2015. 甜瓜幼苗耐冷性相关生理指标的综合评价[J]. 果树学报, 32(6): 1187-1194. (Xu X J, Zhang G L, Zhou Y F, et al.2015. Comprehensive estimation of physiological indices related to chilling resistance of melon seedlings[J]. Journal of Fruit Science, 32(6): 1187-1194.) 14 于滔. 2016. 玉米耐冷的生理与遗传机制研究进展[J]. 黑龙江农业科学, (6): 152-154. (Yu T. 2016. Research progress on physiology and genetics mechanism of cold tolerance for maize[J]. Heilongjiang Agricultural Sciences, (6): 152-154.) 15 张永平, 姚雪琴, 杨少军, 等. 2017. 低温胁迫及恢复对厚皮甜瓜光合作用和抗氧化特性的影[J]. 上海农业学报, 33(1): 41-49. (Zhang Y P, Yao X Q, Yang S J, et al.2017. Effects of low temperature treatment and recovery on the photosynthesis and antioxidant characteristics in melon seedlings[J]. Acta Agriculturae Shanghai, 33(1): 41-49.) 16 章元明, 盖钧镒, 张孟臣. 2004. 利用P1、P2、F1和F2或F2∶3世代联合的数量性状分离分析[J]. 西南农业大学学报,22(1): 6-9. (Zhang Y M, Gai J Y, Zhang M C.2004. Jointly segregating analysis of P1, P2, F1 and F2 or F2∶3 familie[J]. Journal of Southwest Agricultural University, 22(1): 6-9.) 17 周亚峰, 许彦宾, 王艳玲, 等. 2017. 基于主成分-聚类分析构建甜瓜幼苗耐冷性综合评价体系[J]. 植物学报, 52(4): 520-529. (Zhou Y F, Xu Y B, Wang Y L, et al.2017. Establishment of a comprehensive evaluation system for chilling tolerance in melon seedlings based on principal component analysis and cluster analysis[J]. Bulletin of Botany, 52(4): 520-529.) 18 庄飞云, 陈劲枫, 钱春桃, 等. 2002. 甜瓜属种间杂交新种及其后代对低温的适应性反应[J]. 南京农业大学学报, 25(2): 27-30. (Zhuang Y F, Chen J F, Qian C T.2002. Responses of seedlings of Cucumis × hytivus and progenies to low temperature[J]. Journal of Nanjing Agricultural University, 25(2): 27-30.) 19 Cai Z H, Zhu Q J, Xu Y.1995. Studies on inheritance of chilling tolerance in cucumber seedling stage[J]. ISHS Acta Hortic, 402: 206-213. 20 Kerje T, Grum M.2000. The origin of melon, Cucumis melo: A review of the literature[J]. ISHS Acta Horticulturae, 510: 37-44. 21 Hou J, Zhou Y F, Gao L Y, et al.2018. Dissecting the genetic architecture of melon chilling tolerance at the seedling stage by association mapping and identification of the elite alleles[J]. Frontier in Plant Science, 9: 1577. 22 Xue C, Jiang F, Xu W, et al.2015. Comprehensive evaluation and screening for chilling-tolerance in tomato lines at the seedling stage[J]. Euphytica, 205(2): 569-584. |
|
|
|