|
|
Study on Variation of Anti-streptococcosis in 4 Hybrid Offspring of Oreochromis niloticus ♀× O. aureus ♂ |
ZHU Jing-Lin1, 2, ZOU Zhi-Ying1, LI Da-Yu1, XIAO Wei1, YANG Hong1, *, XUE Liang-Yi2, * |
1 Key Laboratory of Freshwater Fisheries and GermPlasm Resources Utilization, Ministry of Agriculture Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; 2 College of Marine Science, Ningbo University, Ningbo 315211, China |
|
|
Abstract Disease outbreak from Streptococcus agalactiae infection has become the most serious bacterial disease for tilapia (Oreochromis spp.) aquaculture in China, while effective prevention and control methods have not yet been established. It is an important approach to breeding the most S. agalactiae -resistant hybrid tilapia for better control and prevention S. agalactiae in tilapia. 4 family groups of hybrid tilapia F1 with different parents were got. They were O. niloticus Egypt strain ♀×O. aureus Xia'ao strain ♂ (NE ♀×AX ♂, EX), O. niloticus Xianghu strain ♀×O. aureus Xia'ao strain ♂(NX ♀×AX ♂, XX), O. niloticus Xianghu strain ♀×O. aureus Egypt strain ♂ (NX ♀×AE ♂, XE), O. niloticus Egypt strain ♀×O. aureus Egypt strain ♂ (NE ♀×AE ♂, EE). The offspring were strengthened rearing for 100 d in the ponds and taken back to the laboratory. All fish were acclimated for 14 d in the laboratory then artificially infected by S. agalactiae intraperitoneally. Fish were cultured on 33±1 ℃. The relative survival rate and serum biochemical parameters of 4 hybrid tilapia infected by S. agalactiae were investigated. The relative survival rate was recorded at different times post infection; Blood samples were respectively collected and analyzed. The relative survival rate at 7 d after infection was as follows: EX hybrid tilapia (50%) > EE hybrid tilapia (37.5%) > XE hybrid tilapia (33.3%)>XX hybrid tilapia (20.8%). Alanine transaminase (ALT) of EX hybrid tilapia showed no significantly difference (P>0.05) before and post injection, while that of other 3 species was significantly higher after infection(P<0.05);The serum electrolytes of 4 hybrid tilapia showed significantly difference after infection by S. agalactiae (P<0.05), but Na+, Ca2+ and Cl- of EX hybrid tilapia almost returned to control level at 3 d after infection. Globulin (GLO) of 4 hybrid tilapia increased statistically at 3 d after infection, and peaked at 7 d, while the albumin/globulin (A/G) index of 4 hybrid tilapia declined significantly at the time (P<0.05); Lactic dehydrogenase (LDH) of all 4 hybrid tilapia increased significantly on the progress of disease (P<0.05), and peaked with approximately 1.81-fold, 6.1-fold, 2.42-fold and 3.77-fold when compared with control samples prior to infection, respectively. Superoxide dismutase (SOD) activity of EE hybrid tilapia was significantly lower than that of the other species prior to infection, but SOD activity of EX hybrid tilapia was the lowest at 1 d and 7 d after infection. The triglyceride (TG) of 4 hybrid tilapia decreased significantly at 3 d after infection by S. agalactiae (P<0.05), while the total cholesterol (TC) of EX, XX and XE decreased significantly at 3 d after infection (P<0.05). Biochemical indexes had shown the 4 hybrid tilapia manifested liver and kidney damage, muscle injury and lipid metabolism after infection, while EX hybrid tilapia diserved less liver damage and muscle injury. And EX and EE hybrid tilapia showed less injury on metabolic activity. These results indicated that EX hybrid tilapia was the most resistant to S. agalactiae. In this study, the potential effects of the different tilapia orthogonal combinations were evaluated from the perspective of anti-streptococcosis. The expected results provide theoretical basis and potentially effective for genetic improvement of tilapia S. agalactiae -resistant breeding.
|
Received: 14 June 2018
|
|
Corresponding Authors:
*, yanghong@ffrc.cn; xueliangyi@nbu.edu.cn
|
|
|
|
[1] 白云飞. 2001. 四种不同地区尼罗罗非鱼和奥利亚罗非鱼间的种群遗传结构差异性分析[D]. 硕士学位论文, 南京农业大学, 导师: 吴婷婷, pp. 7-28. (Bai Y F.2001.The analysis on genetic structure of four different areas tilapia populations[D]. Thesis for M. S., Nanjing Agricultural University, Supervisor: Wu T T, pp. 7-28.) [2] 高风英, 卢迈新, 曹建萌, 等. 2018. 尼罗罗非鱼IPS-1基因SNP位点的筛选及其与链球菌抗性的关联分析[J]. 农业生物技术学报, 26(1):20-33. (Gao F Y, Lu M X, Cao J M, et al.2018. Screening of IPS-1 gene SNPs and their association with resistance to the infection of Streptococcus agalactiae in Oreochromis niloticus[J]. Journal of Agricultural Biotechnology, 26(1): 20-33.) [3] 郭松林, 关瑞章, 冯建军, 等. 2010. 嗜水气单胞菌感染对美洲鳗鲡血液和生化指标的影响[J]. 集美大学学报:自然科学版, 15(2):93-97. (Guo S L, Guan R Z, Feng J J, et al.2010. Influences of blood and biochemical parameters on American eels (Anguilla rostrata) challenged by Aeromonas hydro Phila[J]. Journal of Jimei University:Natural Science, 15(2): 93-97.) [4] 金珊, 王国良, 赵青松, 等. 2005. 加州鲈白云病的病原及血液病理的初步研究[J]. 水生生物学报, 29(2):184-188. (Jin S, Wang G L, Zhao Q S,et al.2005. Preliminary studies on pathogen and hemopathology of the white cloud disease in MicroPterus salmoides[J]. Acta Hydrobiologica Sinica, 29(2): 184-188.) [5] 李思发, 颜标, 蔡完其, 等. 2008.尼罗罗非鱼与萨罗罗非鱼正反杂交后代耐盐性能的杂种优势及其与遗传的相关性的SSR分析[J]. 中国水产科学, 15(2): 189-197. (Li S F, Yan B, Cai W Q, et al.2008. Heterosis and related genetic analysis by SSR for the salt tolerance of reciplrocal hybrids between Nile tilapia (Oreochromis niloticus) and blackchin tilapia (Sarotherodon melanotheron)[J]. Journal of Fishery Sciences of China, 15(2): 189-197.) [6] 明建华, 谢骏, 徐跑, 等. 2011. 大黄素、维生素C及其配伍对团头鲂感染嗜水气单胞菌后生理生化指标的影响[J]. 中国水产科学, 18(3):588-601. (Ming J H, Xie J, Xu P, et al.2011. Effects of emodin, vitamin C and their combination on biochemical parameters and two HSP70s mRNA expression of Wuchang bream (Megalobrama amblyce Phala) infected with Aeromonas hydro Phila[J]. Journal of Fishery Sciences of China, 18(3):588-601.) [7] 强俊, 杨弘, 何杰, 等. 2014. 三种品系尼罗罗非鱼生长及高密度胁迫后生理响应变化的比较[J]. 中国水产科学, 21(1):142-152. (Qiang J, Yang H, He J, et al.2014. Comparison on growth performance in three different strains of Nile tilapia and physiological responses after short-term high stocking density stress[J]. Journal of Fishery Sciences of China, 21(1): 142-152.) [8] 强俊, 杨弘, 马昕羽, 等. 2015. 吉富罗非鱼与奥利亚罗非鱼自繁与杂交F1遗传特性与抗病力分析[J]. 水产学报, 39(1): 32-41. (Qiang J, Yang H, Ma X X, et al.2015.Comparison of genetic traits and disease resistance of GIFT Oreochromis niloticus, O. aureus and their reciprocal hybrids F1 offspring[J]. Journal of Fisheries of China, 39(1):32-41.) [9] 强俊, 杨弘, 王辉, 等. 2012. 海豚链球菌感染对不同品系罗非鱼血液生化指标和肝脏HSP70 mRNA表达的影响[J]. 水产学报, 36(6):958-968. (Qiang J, Yang H, Wang H, et al.2012. Studies on blood biochemical indices and expresion of hetatic HSP70 mRNA of different tilapia strains artificially challenged with Streptococcus iniae[J]. Journal of Fisheries of China, 36(6): 958-968.) [10] 孙其信, 黄铁城, 倪中福. 1996. 小麦杂种优势群研究:I利用 RAPD标记研究小麦品种间遗传差异[J].农业生物技术学报, 4(2): 103-109. (Sun Q X, Huang T C, Ni Z F.1996. Study on wheat heterotic group I. genetic diversity revealed by random amplified polymorphic DNA (RAPD) in elite wheat cultivars[J]. Journal of Agricultural Biotechnology, 4(2): 103-109.) [11] 夏德全, 曹萤, 吴婷婷, 等. 1999a. 用RAPD分析对罗非鱼遗传变异的研究及其对杂种优势的应用[J]. 水产学报, 23(1): 27-32. (Xia D Q, Cao Y, Wu T T, et al.1999. A study on genetic variation of tilapias fish with RAPD analysis and its applicaton to heterosis[J]. Journal of Fisheries of China, 23(1): 27-32.) [12] 夏德全, 曹萤, 杨弘, 等. 1999b. 罗非鱼杂交F1代与亲本的遗传关系及其杂种优势的利用[J]. 中国水产科学, 1999,6(4):29-32. (Xia D Q, Cao Y, Yang H, et al.The relationships between F1 hybrids from tilapia and their parents and the use of their heterosis[J]. Journal of Fishery Sciences of China, 6(4): 29-32.) [13] 徐晓津, 徐斌, 王军, 等.2010. 大黄鱼感染哈维氏弧菌后血液生化指标的变化及组织病理学观察[J]. 水产学报, 34(4):618-625. (Xu X J, Xu B, Wang J, et al.2010. Studies on blood chemistry indices and histopathology of Pseudosciaena crocea artificially challenged with Vibrio harveyi[J]. Journal of Fisheries of China, 34(4): 618-625.) [14] 颉晓勇, 李思发, 蔡完其, 等. 2007. 尼罗罗非鱼、奥利亚罗非鱼及其正、反杂交后代生长有关性状的基因型 ×环境互作及相关分析[J]. 上海海洋大学学报, 16(2): 109-113. (Xie X Y, Li S F, Cai W Q, et al.2007. Genotype-environment interaction and correlation analysis of growth-related traits in Oreochromis niloticus, Oreochromis aureus, and their hybrids[J]. Journal of Shanghai Ocean University, 16(2): 109-113.) [15] 杨弘, 夏德全, 刘蕾, 等. 2004. 奥利亚罗非鱼(♀)、鳜(♂)及其子代间遗传关系的研究[J]. 水产学报, 28(5): 594-598. (Yang H, Xia D Q, Liu L, et al.2004, Studies on hereditary relationship between Oreochromis aurea (♀), SiniPerca chuatsi (♂) and their offspring[J]. Journal of Fisheries of China, 28(5): 594-598.) [16] 周玉, 郭文场, 杨振国, 等.2002. 欧洲鳗鲡“狂游病”血液生化指标研究[J]. 水生生物学报, 26(3):314-316. (Zhou Y, Guo W Y, Yang Z, et al.2002. Studies on the blood biochemical indice of "mad swimdisease" EEL, Angdilla anguilla L.[J]. Acta Hydrobiologica Sinica, 26(3): 314-316.) [17] 朱华平, 卢迈新, 黄樟翰, 等. 2008. 橙色莫桑比克罗非鱼(Oreochromis mossambicus)和荷那龙罗非鱼(O. hornorum)的选育效果评价[J]. 南方水产, 4(3):1-6. (Zhu H P, Lu M X, Huang Z H, et al.2008. Evaluation of selective breeding effect of Oreochromis mossambicus and O. hornorum at fourth generation[J]. South China Fisheries Science , 4(3):1-6.) [18] 祝璟琳, 李大宇, 邹芝英, 等. 2016.高温应激下无乳链球菌感染对尼罗罗非鱼血清生化指标和组织病理的影响[J]. 水产学报, 40(3): 445-456. (Zhu J L, Li D Y, Zou Z Y, et al.2016.The impact of high temperature stress on serum biochemical parameters and histopathology of tilapia Oreochromis niloticus infected by Streptococcus agalactiae[J]. Journal of Fisheries of China, 40(3): 445-456.) [19] 祝璟琳, 杨弘, 邹芝英, 等. 2010. 海南养殖罗非鱼(Oreochromis niloticus)致病链球菌的分离、鉴定及其药敏试验[J]. 海洋与湖沼, 41(4): 590-596. (Zhu J L, Yang H, Zou Z Y, et al.2010. Isolatiom, identification and drug sensitivity test of patholgenic Streptococcus from tilapias Oreochromis niloticus cultured in Hainan[J]. Oceanologia et Limnologia Sinica, 41(4): 590-596.) [20] 祝璟琳, 邹芝英, 李大宇, 等. 2017. 四个罗非鱼选育品种抗链球菌病能力差异研究[J]. 水生生物学报, 6(41):1222-1241. (Zhu J L, Zou Z Y, Li D Y, et al.2017. Study on resistant differance among four bleeding species of tilapia Oreochromis spp. following Streptococcus agalactiae challenge[J]. Acta Hydrobiologica Sinica,6(41):1222-1241.) [21] Brum A, Pereira S A, Cardoso L, et al.2018. Blood biochemical parameters and melanomacrophage centers in Nile tilapia fed essential oils of clove basil and ginger[J]. Fish & Shellfish Immunology, 74: 444-449. [22] Bunlipatanon P, U-tayna Pun K.2017. Growth performance and disease resistance against Vibrio vulnificus infection of novel hybrid grouper (Epinephelus lanceolatus × Epinephelus fuscoguttatus)[J]. Aquaculture Research, 48(4):1711-1723. [23] Chen C, Wooster G A, Bowser P R.2004. Comparative blood chemistry and histopathology of tilapia infected with Vibrio vulnificus or Streptococcus iniae or exposed to carbon tetrachloride, gentamicin, or copper sulfate[J]. Aquaculture, 239(1-4): 421-443. [24] Clauss T M, Dove A D M, Arnold J E.2008. Hematologic disorders of fish[J]. Veterinary Clinics of North America Exotic Animal Practice, 11(3): 445-462. [25] Hickling C F.1960. The Malacca tilapia hybrids[J]. Journal of Genetics, 57(1): 1-10. [26] Huang B F, Zou L L, Xie J G, et al.2013. Immune responses of different species of tilapia infected with Streptococcus agalactiae[J]. Journal of Fish Diseases, 36(8): 747-752. [27] Magnadottir B.2006. Innate immunity of fish (overview)[J]. Fish Shellfish Immunol, 20(2):137-151. [28] Okorie-Kanu C O, Unakalamba N J.2015. Normal haematological and blood biochemistry values of cultured Clarias gariepinus in Southeast, Nigeria[J]. Comparative Clinical Pathology, 24(6): 1445-1450. [29] Pruginin Y, Rothbard S, Wohlfarth G, et al.1975. All-male broods of Tilapia nilotica × T. aurea hybrids[J]. Aquaculture, 6(1): 11-21. [30] Řehulka J, Minařík B.2007. Blood parameters in brook trout Salvelinus fontinalis (Mitchill, 1815), affected by columnaris disease[J]. Aquaculture Research, 38(11): 1182-1197. [31] Sebastiao F A, Nomura D, Sakabe R, et al.2011. Hematology and productive performance of nile tilapia (Oreochromis niloticus) naturally infected with Flavobacterium columnare[J]. Brazilian Journal of Microbiology, 42(1): 282-289. [32] Šimková A, Vojtek L, Halačka K, et al.2015. The effect of hybridization on fish physiology, immunity and blood biochemistry: A case study in hybridizing Cyprinus carpio and Carassius gibelio (Cyprinidae)[J]. Aquaculture, 435:381-389. [33] Sun J, Fang W, Ke B, et al.2016. Inapparent Streptococcus agalactiae infection in adult/commercial tilapia[J]. Scientific Reports, (6): 26319. [34] Uribe C, Folch H, Enriquez R, et al.2011. Innate and adaptive immunity in teleost fish: A review[J]. Veterinarni Medicina, 56(10): 486-503. [35] Wonmongkol P, Sukhavachana S, Ampolsak K, et al.2018. Genetic parameters for resistance against Flavobacterium columnare in Nile tilapia Oreochromis niloticus (Linnaeus, 1758)[J]. Journal of Fish Diseases, 41(2): 321-328. [36] Yu J H, Han J J, Park S W.2010. Haematological and biochemical alterations in Korean catfish, Silurus asotus, experimentally infected with Edwardsiella tarda[J]. Aquaculture Research, 2010,41(2): 295-302. [37] Zhu J, Gan X, Ao Q, et al.2018. Basal polarization of the immune responses to Streptococcus agalactiae susceptible and resistant tilapia (Oreochromis niloticus)[J]. Fish & Shellfish Immunology, 75: 336-345. |
|
|
|