Contact Us Add to Favorite
 
NianQi Search Adv Search
33
  2018, Vol. 26 Issue (2): 253-262    DOI:
Articles and Letters Current Issue | Archive | Adv Search |
The Effects of a Q448H Mutation of the PPARG Gene on Reproductive Traits in Chinese Holstein Cattle (Bos taurus)
Download: PDF (1361 KB)   HTML (1 KB) 
Export: BibTeX | EndNote (RIS)      
Abstract  Reproductive performance in dairy cows is highly correlated with energy metabolism. The peroxisome proliferator-activated receptor gamma (PPARγ) is a ligand-activated nuclear transcription factor that plays an important role in regulating the processes of energy homeostasis, reproductive, and immune physiology. A potentially important candidate gene for reproductive traits of dairy cows is PPARγ, which is encoded by the PPARG. In the present study, a Q448H mutation of the PPARG gene exon7 in Chinese Holstein cattle was detected with polymerase chain reaction products-single strand conformational polymorphism (PCR-SSCP) and DNA sequencing, and assessed through reproductive traits. Results demonstrate the presence of two alleles and 3 genotypes in the locus of the PPARG gene exon7. The 2 alleles were named G and T. The allelic frequencies of the G/T alleles in the three groups were 0.65/0.35, 0.75/0.25, and 0.69/0.31 for the Low-Hybrids, Improved-Hybrids, and Pure Holstein populations, respectively; the GG genotype was preponderant. Except for the Improved-Hybrids (P<0.01), Low-Hybrids and Pure Holsteins were in Hardy-Weinberg equilibrium (P> 0.05) at this locus. Polymorphism information content was moderately high for Low-Hybrids, Improved-Hybrids, and Pure Holsteins at 0.35, 0.31, and 0.34, respectively. Comparing this data with database sequence of Bos taurus (Accession #: NC_007320.6), the mutation of G to T occurred at the 64 947 bp of allele T, which resulted in the substitution of glutamine into histidine, allele G was the same sequence as that of NC_007320.6. Analysis by least squares methodology showed that days-to-first-breeding (DFB) with genotype GG were significantly lower than that with the genotype GT (P<0.05) and TT (P<0.01). The days open (DO) with the genotype GG were significantly lower than that with genotype GT (P<0.05). The number of services-per-conception (NSC), with genotype GG were significantly lower than that with the genotype GT (P<0.01) at first lactation, and with the genotypes GT (P<0.05) and TT (P<0.05) at second lactation. It can be explained by the PPARG gene Q448H mutation that phenotypic variances were 3.82%, 2.55%, 2.24%, and 3.46% for the DFB, DO, and NSC at first and second lactations, respectively. There were no differences in the ages-at-first-calving (AFC) between any genotypes (P>0.05). Additive effects of the G allele were -6.97 d, -11.2 d, and -0.215 t for DFB, DO, and NSC at second lactation, respectively. DFB and DO were reduced by 8.8 days and 15.7 days, respectively, while NSC was reduced by a factor of 0.25 with the allelic substitution of T to G, thereby indicating that the G allele of PPARG gene could benefit from further investigation as its role appears to be associated with reproductive performance. We conclude that the PPARG gene Q448H mutation could be used as a genetic marker for studies seeking to improve reproductive traits in Chinese Holstein cattle. This study has provided the theoretical foundation for maker-assistant-selection (MAS) of reproductive performance in Chinese Holstein cattle.
Key wordsChinese Holstein Cattle      PPARG gene      SNP      Reproductive traits     
Received: 19 June 2017      Published: 04 February 2018
ZTFLH:  S823.9+1  
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
HE Peng-Jia
MA Zheng-Cai
MIN Yan-Ying
DONG Yan-Jiao
ZHU Jing
MA Yong-Sheng
MA Pan-Nan
Cite this article:   
HE Peng-Jia,MA Zheng-Cai,MIN Yan-Ying, et al. The Effects of a Q448H Mutation of the PPARG Gene on Reproductive Traits in Chinese Holstein Cattle (Bos taurus)[J]. , 2018, 26(2): 253-262.
URL:  
http://journal05.magtech.org.cn/Jwk_ny/EN/     OR     http://journal05.magtech.org.cn/Jwk_ny/EN/Y2018/V26/I2/253
Copyright © Editorial Board of 农业生物技术学报
Supported by:Beijing Magtech