|
|
Research Progress and Prospects of Genome Editing Pigs (Sus scrofa) |
2, 2, 2, 2,2 |
|
|
Abstract Abstract With the development of the new genome editing technology, a large number of genome editing pigs (Sus scrofa) with excellent traits and their products spring up. The analysis of literatures and patents about transgenic pigs and genome editing pigs shows that China is in the leading position in this field. This review summarizes research and development status of domestic and foreign genome editing pigs, predicting their development directions in the future. According to the safety management regulations of genetically modified organisms and the attitudes for genome editing organisms in different countries, we also offer some suggestions regarding safety management of genome editing animals and their products in order to promote the industrialized application in China.
|
Received: 15 December 2016
Published: 02 May 2017
|
|
|
|
[1]Carlson D F, Lancto C A, Zang B, et al.2016. Production of hornless dairy cattle from genome-edited cell lines[J]. Nature Biotechnology, 34(5): 479-481.[2]Wang X, Yu H, Lei A, et al.2015. Generation of gene-modified goats targeting MSTN and FGF5 via zygote injection of CRISPR/Cas9 system[J]. Scientific Reports, 5: 13878.[3]Samsa L A, Ito C E, Brown D R, et al.2016. IgG-containing isoforms of neuregulin-1 are dispensable for cardiac trabeculation in zebrafish[J]. PloS one, 11(11): e0166734.[4]Nakagawa Y, Oikawa F, Mizuno S, et al.2016. Hyperlipidemia and hepatitis in liver-specific CREB3L3 knockout mice generated using a one-step CRISPR/Cas9 system[J]. Scientific Reports, 6: 27857.[5]You P, Hu H, Chen Y, et al.2016. Effects of Melanocortin 3 and 4 Receptor Deficiency on Energy Homeostasis in Rats[J]. Scientific Reports, 6: 34938.[6]Zou Q, Wang X, Liu Y, et al.2015. Generation of gene-target dogs using CRISPR/Cas9 system[J]. Journal of molecular cell biology, 7(6): 580-583.[7]Kang Y, Zheng B, Shen B, et al.2015. CRISPR/Cas9-mediated Dax1 knockout in the monkey recapitulates human AHC-HH[J]. Human molecular genetics, 24(25): 7255-7264.[8]Gao F, Shen X Z, Jiang F, et al.2016. DNA-guided genome editing using the Natronobacterium gregoryi Argonaute[J]. Nature biotechnology, 34(7): 768-773.[9]Xu S, Cao S, Zou B, et al.2016. An alternative novel tool for DNA editing without target sequence limitation: the structure-guided nuclease[J]. Genome Biology, 17(1): 186.[10]Hammer R E, Pursel V G, Rexroad C E, et al.1985. Production of transgenic rabbits, sheep and pig by microinjection[J]. Nature, 315(6021): 680- 683.[11]Hauschild J, Petersen B, Santiago Y, et al.2011. Efficient generation of a biallelic knockout in pigs using zinc-finger nucleases[J]. Proceedings of the National Academy of Sciences, 108(29): 12013-12017.[12]Xin J, Yang H, Fan N, et al.2013. Highly efficient generation of GGTA1 biallelic knockout inbred mini-pigs with TALENs[J]. Plos One, 8(12): e84250.[13]Paris L L, Estrada J L, Ping L, et al.2015. Reduced human platelet uptake by pig livers deficient in the asialoglycoprotein receptor 1 protein[J]. Xenotransplantation, 22(3):203–210.[14]Kang J T, Daekee K, Arum P, et al.2016. Production of α1, 3-galactosyltransferase targeted pigs using transcription activator-like effector nuclease-mediated genome editing technology[J]. Journal of Veterinary Science, 17(1):89-96.[15]Tan W, Carlson D F, Lancto C A, et al.2013. Efficient nonmeiotic allele introgression in livestock using custom endonucleases[J]. Proceedings of the National Academy of Sciences of the United States of America, 110(41): 16526-16531[16]Tang H, Fei T, Runfa G, et al.2014. One-step generation of knockout pigs by zygote injection of CRISPR/Cas system[J]. Cell Research, 24(3): 372-375.[17]Yao J, Huang J, Hai T, et al.2014. Efficient bi-allelic gene knockout and site-specific knock-in mediated by TALENs in pigs[J]. Scientific Reports, 4: 6926.[18]Wang X, Cao C, Huang J, et al.2016. One-step generation of triple gene-targeted pigs using CRISPR/Cas9 system[J]. Scientific Reports, 6: 20620.[19]Zhou X, Xin J, Fan N, et al.2015. Generation of CRISPR/Cas9-mediated gene-targeted pigs via somatic cell nuclear transfer[J]. Cellular and MolecularLife Sciences, 72(6):1175-1184.[20]Peng J, Wang Y, Jiang J, et al.2015. Production of Human Albumin in Pigs Through CRISPR/Cas9-Mediated Knockin of Human cDNA into Swine Albumin Locus in the Zygotes[J]. Scientific Reports, 5: 16705.[21]Yi Y, Wang K, Han W, et al.2016. Genetically humanized pigs exclusively expressing human insulin are generated through custom endonuclease-mediated seamless engineering[J]. Journal of Molecular Cell Biology, 8(2):174-177.[22]Li X, Yang Y, Bu L, et al.2014. Rosa26-targeted swine models for stable gene over-expression and Cre-mediated lineage tracing[J]. Cell research, 24(4): 501-504.[23]Ruan J, Li H, Xu K, et al.Highly efficient CRISPR/Cas9-mediated transgene knockin at the H11 locus in pigs[J]. Scientific reports, 2015, 5: 14253.[24]Whitworth K M, Lee K, Benne J A, et al.2014. Use of the CRISPR/Cas9 system to produce genetically engineered pigs from in vitro-derived oocytes and embryos[J]. Biology of Reproduction, 91(3): 78.[25]Whitworth K M, Rowland R R R, Ewen C L, et al.2015. Gene-edited pigs are protected from porcine reproductive and respiratory syndrome virus[J]. Nature Biotechnology, 34(1): 20-22.[26]McPherron AC, Lawler AM, Lee SJ.1997. Regulation of skeletal muscle mass in mice by a new TGF-β superfamily member[J]. Nature, 387(6628): 83-90.[27]McPherron A C, Lee S J.1997. Double muscling in cattle due to mutations in the myostatin gene[J]. Proceedings of the National Academy of Sciences, 94(23): 12457-12461.[28]Schuelke M, Wagner K R, Stolz L E, et al.2004. Myostatin mutation associated with gross muscle hypertrophy in a child[J]. New England Journal of Medicine, 350(26): 2682-2688.[29]Shelton G D, Engvall E.2007. Gross muscle hypertrophy in whippet dogs is caused by a mutation in the myostatin gene[J]. Neuromuscular Disorders, 17(9): 721-722.[30]Qian L, Tang M, Yang J, et al.2015. Targeted mutations in myostatin by zinc-finger nucleases result in double-muscled phenotype in Meishan pigs[J]. Scientific Reports, 5: 14435.[31]Wang K, Ouyang H, Xie Z, et al.2015. Efficient Generation of Myostatin Mutations in Pigs Using the CRISPR/Cas9 System[J]. Scientific Reports, 5: 16623.[32]Bi Y, Hua Z, Liu X, et al.2016. Isozygous and selectable marker-free MSTN knockout cloned pigs generated by the combined use of CRISPR/Cas9 and Cre/LoxP[J]. Scientific Reports, 6: 31729.[33]刘秋妹.2016. 农业转基因生物安全法律保障的国际经验[J]. 世界农业, (7): 114-120. (Liu Q M. 2016. The international experience of the legislation on agricultural Genetically Modified Organisms biosafety and its lessons to China[J]. World Agriculture, (7): 114-120.)[34]郭铮蕾, 汪万春, 饶红, 等.2015. 欧盟转基因生物安全管理制度分析[J]. 食品安全质量检测学报, 6(11): 4277-4284. (Guo Z L, Wang W C, Rao H, et al. 2015. Reviews of European Union safety management system of genetically modified organisms[J]. Journal of Food Safety & Quality, 6(11): 4277-4284.)[35]李宁, 付仲文, 刘培磊, 等.2010. 全球主要国家转基因生物安全管理政策比对[J]. 农业科技管理, 29(1): 1-6. (Li N, Fu Z W, Liu P L, et al. 2014. Comparison of the safety management policy of genetically modified organisms in the world's major countries[J]. Management of Agricultural Science and Technology, 29(1): 1-6.)[36]刘培磊, 徐琳杰, 叶纪明, 等.2014. 我国农业转基因生物安全管理现状[J]. 生物安全学报, 23(4):297-300. (Liu P L, Xu L J, Ye J M, et al. 2014. Administration on the biosafety of agricultural GMOs in China[J]. Journal of Biosafety, 23(4):297-300.)[37]Huang S, Weigel D, Beachy R N, et al.2016. A proposed regulatory framework for genome-edited crops[J]. Nature Genetics, 48(2):109-111.[38]Thakore P I, Black J B, Hilton I B, et al.2016. Editing the epigenome: technologies for programmable transcription and epigenetic modulation[J]. Nature Methods, 13(2): 127-137.[39]Abudayyeh O O, Gootenberg J S, Konermann S, et al.2016. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector[J]. Science, 353(6299): aaf5573. |
|
|
|