|
|
Gene Identification and Expression Analysis of Histidine Phosphotransfer Protein AHP Family in Melon (Cucumis melo) |
ZHAO Wang-Long, LI Jia-Qi, LI Meng*, WANG Ji-Qing, XIAO Huai-Juan, DU Qing-Jie, LI Juan-Qi |
College of Horticulture, Henan Agricultural University, Zhengzhou 450046, China |
|
|
Abstract Arabidopsis histidine phosphotransfer proteins (AHPs) play important roles in plant growth, development and resistance to biotic or abiotic stresses. In this study, bioinformatics, transcriptome analysis and qRT-PCR were used to explore the biological function and expression pattern of AHP in melon (Cucumis melo), including the number of AHP gene family members, chromosome location, gene structure, subcellular localization, conserved motifs, phylogenetic analysis, cis-acting elements and gene expression. Results showed that the CmAHP family had 7 members, and distributed on 7 chromosomes. The length of amino acids ranged from 109 to 412 aa, all of which were hydrophilic. All the members were localized in the nucleus or extracellular matrix. Phylogenetic analysis revealed that the melon AHP members were highly homologous to cucumber (Cucumis sativus). CmAHPs promoter mainly contained cis-acting elements such as light response and hormone response elements. Gene expression analysis showed that CmAHP5 and CmAHP7 were highly expressed in all 5 tissues, including roots, leaves, female flowers, male flowers and fruits, which might play negative roles in fruit development and ripening. Transcriptome data showed that CmAHP5 and CmAHP7 might play negative and positive roles, respectively, in defending Fusarium wilt and powdery mildew. qRT-PCR data showed that CmAHP1~CmAHP5 were involved in low temperature response, among which CmAHP4 might be a key candidate gene. The present study provides a theoretical reference for analyzing the function of AHP gene in melon.
|
Received: 16 September 2022
|
|
Corresponding Authors:
* limengscience@163.com
|
|
|
|
[1] 储章昕. 2013. 玉米细胞分裂素双元信号系统基因的分析及调控研究[D]. 硕士学位论文, 安徽农业大学, 导师: 程备久, pp. 12-25. (Chu Z X.2013. Analysis and regulation of two-component signaling system response regulators genes in maize[D]. Thesis for M. S., Anhui Agricultural University, Supervisor: Cheng B J, pp. 12-25.) [2] 丁小涛. 2008. 砧木喜温性和细胞分裂素对黄瓜光合机构耐冷性的影响[D]. 硕士学位论文, 浙江大学, 导师: 喻景权, pp. 6-42. (Ding X T.2008. Effects of rootstock with different thermophibicity and cytokinin on the chilling tolerance of photosynthetic apparatus in Cucumis sativus[D]. Thesis for M.S., Zhejiang University, Supervisor: Yu J Q, pp. 6-42.) [3] 范婷婷. 2017. ABA和乙烯对树莓果实成熟软化的影响[D]. 硕士学位论文, 东北农业大学, 导师: 杨国慧, pp. 1-20. (Fan T T.2017. ABA and ethylene effection on ripening and softening of raspberry fruit[D]. Thesis for M. S., Northeast Agricultural University, Supervisor: Yang G H, pp. 1-20.) [4] 方治国, 杨青, 谢俊婷, 等. 2022. 重金属污染土壤植物修复中细胞分裂素的作用与机制[J]. 生态学报, 42(08): 3056-3065. (Fang Z G, Yang Q, Xie J T, et al.2022. The role and mechanism of cytokinin in phytoremediation of heavy metal contaminated soil[J]. Acta Ecologica Sinica, 42(08): 3056-3065.) [5] 葛廷, 黄雪, 谢让金. 2019. 柑橘CitPG34的克隆、定位与表达分析[J]. 中国农业科学, 52(19): 3404-3416. (Ge T, Hang X, Xie R J.2019. Cloning, subcellular localization and expression analysis of CitPG34 in citrus[J]. Scientia Agricultura Sinica, 52(19): 3404-3416.) [6] 黄小珍. 2019. 细胞分裂素与脱落酸信号通路拮抗调控拟南芥逆境应答的分子机制[D]. 博士学位论文, 中国农业大学, 导师: 杨淑华, pp. 1-29. (Huang X Z.2019. Antagonistic regulation by cytokinin and ABA signaling in the stress responses in Arabidopsis[D]. Thesis for Ph. D., China Agricultural University, Supervisor: Yang S H, pp. 1-29.) [7] 侯凌燕. 2018. 细胞分裂素B型响应调节子调控拟南芥抗冻性的分子机制[D]. 博士学位论文, 中国农业大学, 导师: 杨淑华, pp. 1-27. (Hou L Y.2018. Molecular mechanism of freezing tolerance regulated by cytokinin type-B response regulators in Arabidopsis[D]. Thesis for Ph. D., China Agricultural University, Supervisor: Yang S H, pp.1-27.) [8] 李猛, 吕亭辉, 邢巧娟, 等. 2018. 瓜类蔬菜耐低温性评价与调控研究进展[J]. 园艺学报, 45(9): 1761-1777. (Li M, Lv T H, Xing Q J, et al.2018. Research progress on evaluation and regulation of chilling tolerance in cucurbitaceous vegetables[J]. Acta Horticulturae Sinica, 45(9): 1761-1777.) [9] 李天来. 2011. 设施蔬菜栽培学[M]. 北京: 中国农业出版社, pp. 19-30. (Li T L.2011. Protected Vegetable Cultivation[M]. China Agriculture Press, Beijing, China, pp. 19-30.) [10] 鲁颖玉. 2012. 甜瓜病害防治技术[J]. 吉林农业, (06): 77. (Lu Y Y. 2012. Technology of melon disease control[J]. Agriculture of Jilin, (06): 77.) [11] 牛西强, 罗潇云, 康凯程, 等. 2021. 辣椒PEBP基因家族的全基因组鉴定、 比较进化与组织表达分析[J]. 园艺学报, 48(5): 947-959. (Niu X Q, Luo X Y, Kang K C, et al.2021. Genome-wide identification, comparative evolution and expression analysis of PEBP gene family from Capsicum annuum[J]. Acta Horticulturae Sinica, 48(5): 947-959.) [12] 邱果, 刘柳, 李小梅, 等. 2017. 甜瓜抗枯萎病和白粉病育种研究进展[J]. 生物技术通报, 33(08): 14-19. (Qiu G, Liu L, Li X M, et al.2017. Research progress on breeding for resistance to Fusarium wilt and powdery mildew in muskmelon[J]. Biotechnology Bulletin, 33(08): 14-19.) [13] 孙丽静, 李倩影, 王培楠, 等. 2020. 水稻组氨酸磷酸转运蛋白OsAHP2的表达及纯化[J]. 华北农学报, 35(4): 46-51. (Sun L J, Li Q Y, Wang P N, et al.2020. Protein expression and purification of OsAHP2 in rice[J]. Acta Agriculturae Boreali-sinica, 35(4): 46-51.) [14] 孙丽静, 张哲, 刘茜, 等. 2018. 小麦组氨酸磷酸转运蛋白TaHP4基因的克隆和表达分析[J]. 华北农学报, 33(2): 14-19. (Sun L J, Zhang Z, Liu Q, et al.2018. Cloning and expression analysis of TaHP4 in wheat[J]. Acta Agriculturae Boreali-sinica, 33(2): 14-19.) [15] 王艳玲, 许彦宾, 李琼, 等. 2017. 基于GWAS发掘甜瓜核心种质果实性状的关联位点[J]. 农业生物技术学报, 25(9): 1434-1442. (Wang Y L, Xu Y B, Li Q, et al.2017. Discovery of related locus on core collection of melon (Cucumis melo) fruit character based on GWAS[J]. Journal of Agricultural Biotechnology, 25(9): 1434-1442.) [16] 徐小军, 梁长志, 刘海英, 等. 2020. 甜瓜苗期耐冷性的多世代联合遗传分析[J]. 农业生物技术学报, 28(03): 420-428. (Xu X J, Liang C Z, Liu H Y, et al.2020. Joint multi-generations genetic analysis on chilling tolerance of melon (Cucumis melo) seedlings[J]. Journal of Agricultural Biotechnology, 28(03): 420-428.) [17] 杨雪, 彭静, 张明明, 等. 2019. 叶面喷施6-BA对玉米生殖期碳水化合物转运和分配的影响[J]. 西北农林科技大学学报, 47(7): 62-70. (Yang X, Peng J, Zhang M M, et al.2019. Effects of foliar spraying of 6-BA on carbohydrate transfer and allocation of maize at the reproductive stage[J]. Journal of Northwest A&F University, 47(7): 62-70.) [18] 银珊珊, 张宁, 武春成, 等. 2021. 萝卜AHP基因家族鉴定与表达模式分析[J]. 中国瓜菜, 34(8): 7-14. (Yin S S, Zhang N, Wu C C, et al.2021. Identification and expression pattern analysis of AHP gene family in radish[J]. China Cucurbits and Vegetables, 34(8): 7-14.) [19] 余义和, 张会灵, 郭大龙, 等. 2017. 葡萄细胞分裂素响应调节因子VvRR2启动子的克隆与活性分析[J]. 分子植物育种, 15(6): 2088-2093. (Yu Y H, Zhang H L, Guo D L, et al.2017. Cloning and activity analysis of the promoter of grapevine cytokinin response regulator VvRR2[J]. Molecular Plant Breeding, 15(6): 2088-2093.) [20] 张俊姝. 2018. 大棚甜瓜病害综合防治技术[J]. 吉林蔬菜, (03): 37-38. (Zhang J S. 2018. Comprehensive control technology of melon diseases in greenhouses[J]. Jilin Vegetables, (03): 37-38.) [21] 张毅. 2013. 设施甜瓜病虫害综合防治技术[J]. 中国瓜菜, 26(5): 60-61. (Zhang Y.2013. Integrated pest control technology of facility muskmelon[J]. China Cucurbits and Vegetables, 26(5): 60-61.) [22] 周国彦, 银珊珊, 高佳鑫, 等. 2022. 黄瓜AHP基因家族的鉴定及其非生物胁迫表达分析[J]. 生物技术通报, 38(06): 112-119. (Zhou G Y, Yin S S, Gao J X, et al.2022. Identification of AHP gene family in Cucumber sativus and its expression analysis under abiotic stress[J]. Biotechnology Bulletin, 38(06): 112-119.) [23] Chayut N, Yuan H, Ohali S, et al.2015. A bulk segregant transcriptome analysis reveals metabolic and cellular processe associated with orange allelic variation and fruit β-carotene accumulation in melon fruit[J]. BMC Plant Biology, 15(01): 274. [24] Hutchison C E, Li J, Argueso C, et al.2006. The Arabidopsis histidine phosphotransfer proteins are redundant positve regulators of cytokinin signaling[J]. The Plant Cell, 18(11): 3073-3087. [25] Ito A, Saito T, Nishijlma T, et al.2014. Effect of extending the photoperiod with low-intensity red or far-red light on the timing of shoot elongation and flower-bud formation of 1-year-old Japanese pear (Pyrus pyrifolia)[J]. Tree Physiology, 34(5): 534-546. [26] Jeffrey M S, Melanie S P, Barrett S P, et al.2005. Two-component signal transduction pathways regulating growth and cell cycle progression in a bacterium: A system-level analysis[J]. PLOS Biology, 3(10): e334. [27] Jin Z X, Li D, Li M Y, et al.2017. Comparative analysis on gene expression and promoter sequence in rice glutamine synthetase[J]. Journal of Northeast Agricultural University, 48(10): 1-10. [28] Li M, Duan X Y, Gao G, et al.2022. CmABF1 and CmCBF4 cooperatively regulate putrescine synthesis to improve cold tolerance of melon seedlings[J]. Horticulture Research, 9: uhac002. [29] Nishiyama R, Watanabe Y, Leyva-Gonzalez M A, et al.2013. Arabidopsis AHP2, AHP3, and AHP5 histidine phosphotransfer proteins function as redundant negative regulators of drought stress response[J]. Proceedings of the National Academy of Sciences of the USA, 110(12): 4840-4845. [30] Pieterse C M J, Van der Does D, Zamioudis C, et al.2012. Hormonal modulation of plant immunity[J]. Annual Review of Cell and Developmental Biology, 28(01): 489-521. [31] Sun L J, Zhang Q, Wu J X, et al.2014. Two rice authentic histidine phosphotransfer proteins, OsAHP1 and OsAHP2, mediate cytokinin signaling and stress responses in rice[J]. Plant Physiology, 165(1): 335-345. [32] Tamura K, Dudley J, Nei M, et al.2007. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0[J]. Molecular Biology and Evolution, 24(8): 1596-1599. [33] Tian Z, Han J D, Che G, et al.2022. Genome-wide characterization and expression analysis of SAUR gene family in melon (Cucumis melo L.)[J]. Planta, 255: 123. [34] Wei S W, Gao L W, Zhang Y D, et al.2016. Genome-wide investigation of the NAC transcription factor family in melon (Cucumis melo L.) and their expression analysis under salt stress[J]. Plant Cell Reports, 35: 1827-1839. [35] Xing Q J, Liao J J, Cao S X, et al.2020. CmLOX10 positively regulates drought tolerance through jasmonic acid-mediated stomatal closure in oriental melon (Cucumis melo var. makuwa makino)[J]. Scientifc Reports, 10(01): 17452. |
|
|
|