|
|
Prokaryotic Expression, Antibody Preparation of GP2 in Bactrian Camel (Camelus bactrianus) and Its Expression in Ileum |
LIU Ke-Jiang, LI Pei-Xuan, ZHANG Rui, WANG Ting-Wei, SUO Nan-Ji, WANG Wen-Hui* |
College of Animal Medicine, Gansu Agricultural University, Lanzhou 730070, China |
|
|
Abstract Glycoprotein 2 (GP2) is a kind of glycosylphosphatidylinositol-anchored proteins (GPI-APs) produced by mucous glands and secretory cells, it can ingest pathogenic bacteria in the intestinal cavity and is of great significance to maintain the homeostasis of the body. In order to obtain the antibody against Bactrian camel (Camelus bactrianus) GP2, the bactrian camel GP2 gene was cloned into pET-28a, constructing the recombinant plasmid pET-28a-GP2, the recombinant plasmid pET-28a-GP2 was then transferred into Escherichia coli BL21 for induction and expression. After the optimization of induction conditions, the expression of GP2 recombinant protein was detected by SDS-PAGE and Western blot. To prepare rabbit polyclonal antibodies against GP2 with target protein, The titer and specificity of the antibody was detected by ELISA and Western blot, immunohistochemical staining was used to understand its expression in ileum. The results showed that the size of GP2 protein was about 65 kD, the optimal induction conditions were 0.5 mmol/L isopropyl-beta-D-thiogalactopyranoside (IPTG) 6 h, mainly expressed in the form of inclusion bodies. The polyclonal antibody was used at a titer of 1∶2.56×105 to specifically recognize recombinant protein GP2 as determined by ELISA and Western blot. Immunohistochemical staining results showed that GP2 is mainly expressed in follicular associated epithelium of ileum, and expressed on the cell membrane of microfold cell (M cell). This study provides a reference for the follow-up study of GP2, enriches the relevant theories of mucosal immunity, solves the problem of no commercially available antibodies on the market at present, and provides antibody support for the development of new drugs.
|
Received: 08 August 2022
|
|
Corresponding Authors:
* wwh777@126.com
|
|
|
|
[1] 杜瑶瑶, 王冰, 张宁. 2020. 肠道派氏结 M 细胞在淋巴传递中的生物功能及靶向载体研究进展[J]. 药学学报, 55(06): 1166-1174. (Du Y Y, Wang B, Zhang N.2020. Pro-gresses on biological function and taregeting vehicles of intestinal Peyer's patches M cells in lymphatic transmis-sion[J]. Acta Pharmaceutica Sinica, 55(06): 1166-1174.) [2] 李东海, 张旺东, 程翠翠, 等. 2018. 双峰驼血清 IgG 亚型的分离纯化及多克隆抗体的制备[J]. 兽类学报, 38(05):486-490. (Li D H, Zhang W D, Cheng C C, et al. 2018. Isolation and purification of serum IgG subtypes from bactrian camels and preparation of polyclonal antibodies[J]. Acta Theriologica Sinica, 38(05): 486-490.) [3] 李敏, 吴秀萍, 张旺东, 等. 2020. 双峰驼 IgM 部分重链的原核表达及其多克隆抗体的制备[J]. 动物医学进展, 41(04): 33-37. (Li M, Wu X P, Zhang W D.et al. 2020. Prokaryotic expression of partial IgM heavy chain gene and polyclonal antibody preparation from bactrian cam-el[J]. Progress in Veterinary Medicine, 41(04): 33-37.) [4] 李沛轩, 刘晓霞, 刘丽萍, 等. 2022. 双峰驼 FcαR 基因的原核表达、抗体制备及其在脾脏中的表达模式[J]. 农业生物技术学报, 30(10): 1944-1953. (Li P X, Liu X X, Liu L P.et al. 2022. Prokaryotic expression, antibody prepa-ration of FcαR gene in Bactrian camel (Camelus batria- nus) and its expression pattern in spleen[J]. Journal of Agricultural Biotechnology, 30(10): 1944-1953.) [5] 李淑娴, 郭明刚, 张学锋, 等. 2015. CD11c+DC 和 CD103+ DC 及 CD68+Mφ 在双峰驼肠系膜淋巴结中的分布特点[J]. 中国兽医科学, 45(08): 843-847. (Li S X, Guo M G, Zhang X F, et al. 2015. CD11c+DC, CD103+DC and CD68+Mφ distribution characteristics in mesenteric lymph nodes of bactrian camel[J]. Chinese Veterinary Science, 45(08): 843-847.) [6] 刘胜兵, 杨倩. 2004. 黏膜免疫途径的研究进展[J]. 免疫学杂志, (S1): 66-68. (Liu S B, Yang Q. 2004. Research prog-ress in the mucosal immune[J]. Immunological Journal, (S1): 66-68.) [7] 吴秀萍, 陆佳, 张亮, 等. 2019. 双峰驼 IgA 基因的原核表达及抗体制备[J]. 动物医学进展, 40(12): 30-34. (Wu X P, Lu J, Zhang L.et al. 2019. Prokaryotic expression and polyclonal antibody preparation of Bactrian camel IgA gene[J]. Progress in Veterinary Medicine, 40(12):30-34.) [8] 许相洋, 陈文标, 丁小明, 等. 2011. 肠道黏膜 M 细胞与微生物相互作用机制研究进展[J]. 胃肠病学和肝病学杂志, 20(08): 782-784. (Xu X Y, Chen W B, Ding X M.et al. 2011. Progress of the interaction mechanisms about M cells and microorganism in the intestinal mucosa[J]. Chinese Journal of Gastroenterology and Hepatology, 20(08): 782-784.) [9] 余琼, 赵丽华, 李洪丽, 等. 2012. IPTG 诱导浓度、时间及温度对重组鲑鱼降钙素与降钙素基因相关肽融合基因表达的影响[J]. 黑龙江大学自然科学学报, 29(02):243-245. (Yu Q, Zhao L H, Li H L, et al. 2012. The im-pact of the recombinant salmon calcitonin and calcito-nin gene-related peptide fusion gene expression by the IPTG induction concentration, time and temperature[J]. Journal of Natural Science of Heilongjiang University,29(02): 243-245.) [10] 张学锋.2016. 不同年龄家兔消化道孤立淋巴滤泡及其滤泡相关上皮的研究[D]. 硕士学位论文, 甘肃农业大学, 导师: 王雯慧, pp. 40-41. (Zhang X F.2016. Study on the isolated lymphoid follicles and its follicular associat-ed epithelium of the digestive tract of rabbits of differ-ent ages[D]. Thesis for M.S., Gansu Agricultural Univer-sity, Supervisor: Wang W H, pp. 40-41.) [11] 张学锋, 李淑娴, 李航, 等. 2016. IgA 和 IgG 分泌细胞在双峰驼 CALT 中的分布规律[J]. 中国兽医学报, 36(02): 353-356. (Zhang X F, Li S X, Li H.et al. Distribution of IgA and IgG secreting cells in Bactrian camel CALT[J]. Chi-nese Journal of Veterinary Science, 36(02): 353-356.) [12] 张远冬, 孙逊. 2022. 克服免疫屏障的黏膜疫苗递送技术研究进展[J]. 药学进展, 46(04): 282-295. (Zhang Y D, Sun X.2022. Research progress of delivery technolo-gies to overcome immunological barriers for effective mucosal vaccination[J]. Progress in Pharmaceutical Sci-ences, 46(04): 282-295.) [13] Devriendt B, De G B G, Goddeeris B M, et al. 2012. Crossing the barrier: Targeting e-pithelial receptors for enhanced oral vaccine delivery[J]. Journal of Controlled Release,160(3): 431-439. [14] Kanaya T, Ohno H, 2014. The mechanisms of M-cell differen-tiation[J]. Bioscience Microbiota Food and Health, 33(3): 91-97. [15] Kimura S.2018. Molecular insights into the mechanisms of M-cell differentiation and transcytosis in the mucosa-as-sociated lymphoid tissues[J]. Anatomical Science Inter-national, 93(1): 23-34. [16] Knoop K A, Kumar N, Butler B R, et al. 2009. Rankl is neces-sary and sufficient to initiate development of antigen- sampling M cells in the intestinal epithelium[J]. Journal of Immunology, 183(9): 5738-5747. [17] Kolenda R, Burdukiewicz M, Schiebel J, et al. 2018. Adhe-sion of Salmonella to pancreatic secretory granule mem-brane major glycoprotein GP2 of human and porcine ori-gin depends on FimH sequence variation[J]. Frontiers in Microbiology, 9: 1905. [18] Kurono Y.2022. The mucosal immune system of the upper re-spiratory tract and recent progress in mucosal vaccines[J]. Auris Nasus Larynx, 49(1): 1-10. [19] Lo D D.2018. Vigilance or Subversion? Constitutive and in-ducible M cells in mucosal tissues[J]. Trends in Immu-nology, 39(3): 185-195. [20] Matsumura T, Sugawara Y, Yutani M, et al. 2015. Botulinum toxin a complex exploits intestinal M cells to enter the host and exert neurotoxicity[J]. Nature Communic- ation, 17(6): 6255. [21] Shao F, Yu D, Xia P, et al. 2021. Dynamic regulation of innate lymphoid cells in the mucosal immune system[J]. Cellu-lar & Molecular Immunology, 18(6): 1387-1394. [22] Takiishi T, Fenero C I M, Camara N O S.2017. Intestinal bar-rier and gut microbiota: Shaping our immune responses throughout life[J]. Tissue Barriers, 5: e1373208. [23] Tornai T, Tornai D, Sipeki N, et al. 2018. Loss of tolerance to gut immunity protein, glycoprotein 2 (GP2) is associat-ed with progressive disease course in primary sclerosing cholangitis[J]. Scientific Reports, 8(1): 399. [24] Wang M, Gao Z, Zhang Z, et al. 2014. Roles of M cells in in-fection and mucosal vaccines[J]. Human Vaccines & Im-munotherapeutics, 10(12): 3544-3551. |
|
|
|