|
|
Selection and Application of Reference Genes for Quantitative Real-time PCR in Exserohilum turcicum |
DAI Yu-Li1, LIU Xiao-Fei1, GAN Lin1, LAN Cheng-Zhong1, TENG Zhen-Yong2, YANG Xiu-Juan1* |
1 Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests/Fujian Engineering Research Center for Green Pest Management, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; 2 Fujian Seed Station, Fuzhou 350001, China |
|
|
Abstract Northern leaf blight caused by the heterothallic ascomycete Exserohilum turcicum, it is an important foliar fungal disease that affects corn (Zea mays) and sorghum (Sorghum bicolor) production in China. To select suitable reference genes for quantitative real-time PCR (qRT-PCR) in E. turcicum, the elongation factor-1α (EF-1α), nascent-polypeptide-associated complex alpha polypeptide (NACA), 60S ribosomal protein L2 (RPL2), 60S ribosomal protein L37a (RPL37A), ubiquitin-conjugating enzyme (UBC), α-tubulin (TUBA), actin (ACT) and β-tubulin (TUBB) genes were served as candidate reference genes, and the samples from 4 different isolates of E. turcicum, three different stages of development, four different periods of infection in vivo, and 4 different times under difenoconazole stress were used as experimental materials in this study. The qRT-PCR technique was used to measure the expressions of candidate reference genes of E. turcicum under different conditions as mentioned above, and the analytical methods of geNorm (v3.5), NormFinder (v0.953), BestKeeper (v1.0), Delta-CT, and RefFinder (http://blooge. cn/RefFinder/) were used for comprehensive assessment the expression stability of candidate reference genes. Meanwhile, the expression pattern of lanosterol 14α -demethylase (CYP51) gene of E. turcicum under difenoconazole stress was analyzed using the screened most stable and least stable reference gene, respectively. The results showed that the amplification efficiencies of the 8 candidate reference genes ranged from 90.3% to 97.8% (r>0.99), with the melting curve peak being a single peak, which met the requirements of amplification efficiency in qRT-PCR. TUBA and TUBB were suitable for reference genes among different isolates of E. turcicum. RPL2 and TUBA were steadier reference genes at different stages of development. NACA and TUBA were more ideal reference genes for different stages of infection in vivo. ACT was appropriate for reference gene at different times under difenoconazole stress. qRT-PCR analysis indicated that the expression of CYP51 gene of E. turcicum significantly increased over time under difenoconazole stress, with the highest expression at 24 h, while CYP51 was significantly down expressed at 36 h (P<0.05). When a more stabile gene of ACT was used as the internal reference gene, the expression of CYP51 gene of E. turcicum was significantly up-regulated under difenoconazole stress compared with those of the non-stress group (P<0.05). However, an opposite result of the CYP51 gene expression level of the 2 isolates was obtained when the unstable TUBB gene was served as the reference gene. This study affords an effective correction tool for quantitative analysis of gene expression in E. turcicum, ensures the accuracy of quantitative analysis of gene expression, and provides a reliable reference for further study on the overexpression of fungicide resistant genes in E. turcicum.
|
Received: 10 February 2022
|
|
Corresponding Authors:
* yxjzb@126.com
|
|
|
|
[1] 代玉立, 甘林, 阮宏椿, 等. 2019. 福建省丙环唑不同敏感性玉米小斑病菌的遗传多样性和致病性[J]. 植物病理学报, 49(1): 64-74. (Dai Y L, Gan L, Ruan H C, et al. 2019. Genetic diversity and pathogenicity of different propiconazole-sensitive isolates of Bipolaris maydis in Fujian province[J]. Acta Phytopathologica Sinica, 49(1):64-74. ) [2] 冯胜泽, 刘星晨, 王海祥, 等. 2017. 玉米大斑病菌分生孢子形成的影响因素及 GATA 转录因子家族的表达分析[J]. 中国农业科学, 50(7): 1234-1241. (Feng S Z, Liu X C, Wang H X, et al. 2017. Influencing factors of conidio-spore and expression analysis of GATA transcription fac-tor gene family in Setosphaeria turcica[J]. Scientia Agri-cultura Sinica, 50(7): 1234-1241. ) [3] 甘林, 代玉立, 卢学松, 等. 2021. 闽南山区鲜食玉米叶斑病季节性流行动态及药剂防治[J]. 植物保护, 47(6): 213- [4] 222, 230. (Gan L, Dai Y L, Lu X S, et al. 2021. Season-al epidemic dynamics and chemical control of leaf spot diseases on fresh corn in the mountain area of the south Fujian[J]. Plant Protection, 47(6): 213-222, 230. ) [5] 葛鑫涛, 殷淯梅, 高丽丹, 等. 2021. 菰黑粉菌实时荧光定量PCR 分析中内参基因的选择及应用[J]. 农业生物技术学报, 29(2): 402-412. (Ge X T, Yin Y M, Gao L D, et al. 2021. Selection and application of reference genes for qRT-PCR in Ustilago esculenta[J]. Journal of Agricultur-al Biotechnology, 29(2): 402-412. ) [6] 巩校东, 王玥, 张盼, 等. 2015. 玉米大斑病菌 MAPK 基因 StIME2 的基因组定位蛋白质结构预测及表达分析[J]. 中国农业科学, 48(13): 2549-2558. (Gong X D, Wang Y, Zhang P, et al. 2015. Analysis of the genomic loca-tion, protein structure prediction and expression of MAPK gene StIME2 in Setosphaeria turcica[J]. Scientia Agricultura Sinica, 48(13): 2549-2558. ) [7] 郭建国, 杨凤珍, 杜蕙, 等. 2019. 甘肃省玉米大斑病菌对丙环唑和腈菌唑敏感性评价[J]. 玉米科学, 27(3): 161-168. (Guo J G, Yang F Z, Du H, et al. 2019. Monitoring of sensitivity of Exserohilum turcicum to propiconazole and myclobutanil in Gansu province[J]. Journal of Maize Sciences, 27(3): 161-168. ) [8] 黄雪玲, 冯浩, 康振生. 2012. 小麦条锈菌实时荧光定量 PCR 分析中内参基因的选择[J]. 20(2): 181-187. (Huang X L, Feng H, Kang Z S. 2012. Selection of reference genes for quantitative real-time PCR normalization in Puccinia striiformis f. sp. tritici[J]. Journal of Agricultur-al Biotechnology, 20(2): 181-187. ) [9] 贾慧, 孟庆江, 李志勇, 等. 2015. 玉米大斑病菌黑色素合成酶基因的全基因组定位及表达模式分析[J]. 中国农业科学, 48(14): 2767-2776. (Jia H, Meng Q J, Li Z Y, et al. 2015. Localization of melanin biosynthesis enzyme genes in the genome and expression pattern analysis of Setosphaeria turcica[J]. Scientia Agricultura Sinica, 48(14): 2767-2776. ) [10] 李梦倩, 刘敏, 张蒙, 等. 2021. 大蒜体细胞胚发生 mRNA 及 miRNA qPCR 内参基因的筛选和验证[J]. 农业生物技术学报, 29(12): 2449-2464. (Li M Q, Liu M, Zhang M, et al. 2021. Identification and verification of somatic embryogenesis mRNA and miRNA qPCR reference genes in garlic (Allium sativum)[J]. Journal of Agricul-tural Biotechnology, 29(12): 2449-2464. ) [11] 刘凡奇, 万贵钧, 曾路影, 等. 2019. 近零磁场下灰飞虱转录表达分析稳定性内参基因筛选[J]. 中国农业科学, 52(19): 3346-3356. (Liu F Q, Wan G J, Zeng L Y, et al. 2019. Selection of stable internal reference genes for transcript expression analyses in Laodelphax striatellus under near-zero magnetic field[J]. Scientia Agricultura Sinica, 52(19): 3346-3356. ) [12] 龙凤, 王擎, 朱行, 等. 2020. 玉米大斑病菌 Septin 基因家族的鉴定与表达模式分析[J]. 中国农业科学, 53(24): 5017-5026. (Long F, Wang Q, Zhu H, et al. 2020. Identi-fication and expression pattern analysis of Septin gene family of Setosphaeria turcica[J]. Scientia Agricultura Si-nica, 53(24): 5017-5026. ) [13] 苏强军, 夏樱霞, 谢放, 等. 2021. 冬虫夏草菌实时荧光定量 PCR 内参基因的筛选[J]. 菌物学报, 40(7): 1712-1722. (Su Q J, Xia Y X, Xie F, et al. 2021. Screening of the reference genes for qRT-PCR analysis of gene expres-sion in Ophiocordyceps sinensis[J]. Mycosystema, 40(7): 1712-1722. ) [14] 覃慧娟, 范付华, 周紫晶. 2022. 激素处理下马尾松茎干组织qPCR 内参基因的筛选[J]. 农业生物技术学报, 30(2): 393-401. (Tan H J, Fan F H, Zhou Z J. 2022. Screening of qPCR internal reference genes in stem tissue of Pinus massoniana under hormone treatment[J]. Journal of Ag-ricultural Biotechnology, 30(2): 393-401. ) [15] 王晓鸣, 晋齐鸣, 石洁, 等. 2006. 玉米病害发生现状与推广品种抗性对未来病害发展的影响[J]. 植物病理学报, 36(1): 1-11. (Wang X M, Jin Q M, Shi J, et al. 2006. The status of maize diseases and the possible effect of variety resistance on disease occurrence in the future[J]. Acta Phytopathologica Sinica, 36(1): 1-11. ) [16] 肖明纲, 宋凤景, 孙兵, 等. 2018. 玉米大斑病广谱抗性外引自交系的发掘与抗病基因初步鉴定[J]. 作物学报, 44(4): 614-619. (Xiao M G, Song F J, Sun B, et al. 2018. Exploration of foreign maize inbred lines with broad spectrum resistance to northern corn leaf blight and pre-liminary identification of resistance genes[J]. Acta Agro-nomica Sinica, 44(4): 614-619. ) [17] 杨贝贝, 杨阳, 戴冬青, 等. 2021. 玉米大斑病菌交配型基因StMAT1-1 和 StMAT1-2 表达与转录活性分析[J]. 农业生物技术学报, 29(4): 764-771. (Yang B B, Yang Y, Dai D Q, et al. 2021. Expression and transcriptional activity analysis of mating type genes StMAT1-1 and StMAT1-2 in Setosphaeria turcica[J]. Journal of Agricultural Bio-technology, 29(4): 764-771. ) [18] 杨丹, 李清, 王贵禧, 等. 2017. 平欧杂种榛实时荧光定量PCR 内参基因的筛选与体系建立[J]. 中国农业科学, 50(12): 2399-2410. (Yang D, Li Q, Wang G X, et al. 2017. Reference genes selection and system establish-ment for real-time qPCR analysis in Ping' ou hybrid ha-zelnut (C. heterophylla Fisch. × C. avellana L. )[J]. Scien-tia Agricultura Sinica, 50(12): 2399-2410. ) [19] Andersen C L, Jensen J L, Orntoft T F. 2004. Normalization of real time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets[J]. Cancer Research, 64(15): 5245-5250. [20] Chen F, Liu X, Schnabel G. 2013. Field strains of Monilinia fructicola resistant to both methyl benzimidazole carba-mate and demethylase inhibitor fungicides isolated from stone fruit orchards in the eastern United States[J]. Plant Disease, 97(8): 1063-1068. [21] Dai Y, Gan L, Lan C, et al. 2021. Genetic differentiation and mixed reproductive strategies in the northern corn leaf blight pathogen Setosphaeria turcica from sweet corn in Fujian province, China[J]. Frontiers in Microbiology, 12: 632575. [22] Ding J Q, Ali F, Chen, G S, et al. 2015. Genome-wide associa-tion mapping reveals novel sources of resistance to northern corn leaf blight in maize[J]. BMC Plant Biolo-gy, 15: 206. [23] Hellemans J, Mortier G, De Paepe A, et al. 2007. qBase rela-tive quantification framework and software for manage-ment and automated analysis of real-time quantitative PCR data[J]. Genome Biology, 8(2): R19. 1-14. [24] Jindal K K, Tenuta A U, Woldemariam T, et al. 2019. Occur-rence and distribution of physiological races of Exserohi-lum turcicum in Ontario, Canada[J]. Plant Disease, 103(7): 1450-1457. [25] Liu Y, Chen X, Jiang J H, et al. 2014. Detection and dynamics of different carbendazim-resistance conferring β -tubulin variants of Gibberella zeae collected from infected wheat heads and rice stubble in China[J]. Pest Management Science, 70(8): 1228-1236. [26] Lyu Y, Wu X, Ren H, et al. 2017. Selection of reliable refer-ence genes for gene expression studies in Trichoderma afroharzianum LTR-2 under oxalic acid stress[J]. Jour-nal of Microbiological Methods, 141: 28-31. [27] Mair W J, Deng W W, Mullins J G L, et al. 2016. Demethyl-ase inhibitor fungicide resistance in Pyrenophora teres f. sp. teres associated with target site modification and in-ducible overexpression of Cyp51[J]. Frontiers in Micro-biology, 7: 1279. [28] Navarro B L, Romero L R, Kistner M B, et al. 2021. Assess-ment of physiological races of Exserohilum turcicum iso-lates from maize in Argentina and Brazil[J]. Tropical Plant Pathology, 46(3): 371-380. [29] Nieuwoudt A, Human M P, Craven M, et al. 2018. Genetic dif-ferentiation in populations of Exserohilum turcicum from maize and sorghum in South Africa[J]. Plant Pathology, 67(7): 1483-1491. [30] Omrane S, Sghyer H, Audéon C, et al. 2015. Fungicide efflux and the MgMFS1 transporter contribute to the multidrug resistance phenotype in Zymoseptoria tritici field isolates[J]. Environmental Microbiology, 17(8): 2805-2823. [31] Pfaffl M W, Tichopad A, Prgomet C, et al. 2004. Determina-tion of stable housekeeping genes, differentially regulat-ed target genes and sample integrity: BestKeeper-Excel-based tool using pair-wise correlations[J]. Biotechnolo-gy Letters, 26(6): 509-515. [32] Popovici V, Goldstein D R, Antonov J, et al. 2009. Selecting control genes for RT-QPCR using public microarray data[J]. BMC Bioinformatics, 10: 42. [33] Rizzardi D A, Peterlini E, Scapim C A. et al. 2022. Genome wide association study identifies SNPs associated with northern corn leaf blight caused by Exserohilum turci-cum in tropical maize germplasm (Zea mays L. )[J]. Eu-phytica, 218(4): 40. [34] Schmittgen T D, Livak K J. 2008. Analyzing real-time PCR data by the comparative CT method[J]. Nature Proto-cols, 3(6): 1101-1108. [35] Schnabel G, Dai Q, Paradkar M R. 2003. Cloning and expres-sion analysis of the ATP binding cassette transporter MFABC1 gene and the alternative oxidase gene MfAOX1 from Monilinia fructicola[J]. Pest Management Science, 59(10): 1143-1151. [36] Song L, Li T, Fan L, et al. 2016. Identification and evaluation of reliable reference genes in the medicinal fungus Shiraia bambusicola[J]. Current Microbiology, 72(4): 444-449. [37] Sun Z B, Li S D, Sun M H. 2015. Selection of reliable refer-ence genes for gene expression studies in Clonostachys rosea 67-1 under sclerotial induction[J]. Journal of Mi-crobiological Methods, 114: 62-65. [38] Tang L, Gao Z G, Yao Y, et al. 2015. Identification and genet-ic diversity of formae speciales of Setosphaeria turcica in China[J]. Plant Disease, 99(4): 482-487. [39] Tarafder M, Datta B. 2022. Deciphering β-tubulin gene of car-bendazim resistant Fusarium solani isolate and its com-parison with other Fusarium species[J]. Current Genet-ics, 68(3-4): 429-447. [40] Vandesompele J, De Preter K, Pattyn F, et al. 2002. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes[J]. Genome Biology, 3(7): research0034. 1-12. [41] Wang T, Cao X, Wang X, et al. 2021. Selection of suitable ref-erence genes for quantitative real time PCR in different Tulasnella isolates and orchid-fungus symbiotic germi-nation system[J]. Molecular Biology Reports, 48(1): 527-538. [42] Weems J D, Bradley C A. 2017. Sensitivity of Exserohilum tur-cicum to demethylation inhibitor fungicides[J]. Crop Protection, 99: 85-92. [43] Ye J, Coulouris G, Zaretskaya I, et al. 2012. Primer-blast: A tool to design target-specific primers for polymerase chain reaction[J]. BMC Bioinformatics, 13: 134. [44] Yu H Y, Ruan H C, Xia X Y, et al. 2022. Maize FERONIA-like receptor genes are involved in the response of multi-ple disease resistance in maize[J]. Molecular Plant Pa-thology, 23(9): 1331-1345. [45] Zhang J, Sun Z B, Li S D, et al. 2017. Identification of suit-able reference genes during the formation of chlamydo-spores in Clonostachys rosea 67-1[J]. MicrobiologyO-pen, 6(5): e00505. [46] Zhang Y, Mao C X, Zhai X Y, et al. 2021. Mutation in cyp51b and overexpression of cyp51a and cyp51b confer multiple resistant to DMIs fungicide prochloraz in Fu-sarium fujikuroi[J]. Pest Management Science, 77(2): 824-833. [47] Zhang Y, Zhou Q, Tian P, et al. 2020. Induced expression of CYP51 associated with difenoconazole resistance in the pathogenic Alternaria sect. on potato in China[J]. Pest Management Science, 76(5): 1751-1760. [48] Zhong S, Miao J Q, Liu X L, et al. 2021. Characterization of Colletotrichum spp. sensitivity to carbendazim for iso-lates causing strawberry anthracnose in China[J]. Plant Disease, 105(1): 87-95. |
[1] |
FU Qiu-Ling, ZHANG Rui, FU Guang-Hua, WAN Chun-He, CHENG Long-Fei, SHI Shao-Hua, CHEN Hong-Mei, LIU Rong-Chang, HUANG Yu. Establishment of SYBR GreenⅠReal-time Quantitative PCR Assay for Detecting Duck astrovirus-3[J]. 农业生物技术学报, 2022, 30(4): 817-824. |
|
|
|
|