|
|
Identification and Expression Analysis of WRKY Gene Family in Litsea cubeba |
SU Wen-Juan, CHEN Xia, CAO Rui-Lan, CHEN Shang-Xing, LIU Zhou-Ying, LIU Juan* |
Jiangxi Provincial key Laboratory of Silviculture/College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China |
|
|
Abstract Litsea cubeba is one of the important woody spice species in southern China and is extremely susceptible to biotic and abiotic stresses during growth process. WRKY transcription factors play important roles in plant growth and development, stress response and other physiological processes. In this study, 41 LcWRKY genes were identified based on bioinformatics analysis, sorted into lines and explored for their expression specificity in different tissues. Phylogenetic development revealed that members of the LcWRKY family were divided into 2 taxa, with the 2nd taxon containing 5 subclasses (Ⅱ-a, Ⅱ-b, Ⅱ-c, Ⅱ-d, and Ⅱ-e). The results of conserved motif and structural domain analysis of the LcWRKY genes confirmed the accuracy of the phylogenetic clustering analysis. Protein interaction network co-expression analysis showed that LcWRKY36, LcWRKY38, and LcWRKY39 were at the centre of the common thread, presumably playing key roles in the regulation of Litsea cubeba in response to disease and low phosphorus stress. Analysis of transcriptome data from different tissues revealed that 41 LcWRKY members differentially expressed in different tissues, with 10 genes, including LcWRKY1, LcWRKY3 and LcWRKY8, showing high expression in roots, with LcWRKY8 being 25-fold more expressed in roots than that in leaves, presumably playing an important role in root development and stress. In addition, the relative expression of LcWRKY29, LcWRKY10, LcWRKY15, LcWRKY22, and LcWRKY1 were higher in fruits, which were presumed to be involved in the biosynthesis of secondary metabolites such as citral in bilberry fruits. The present study provides a basis for further analysis of the functions of WRKY transcription factors in L. cubeba.
|
Received: 15 September 2021
|
Corresponding Authors:
*liu_juan1122@163.com
|
|
|
|
[1] 卜华虎, 王晓清, 任志强, 等 . 2020. 植物 WRKY 转录因子家族基因研究进展[J]. 山西农业科学 , 48(07): 1158-1163.
(Bu H H, Wang X Q, Ren Z Q, et al.2020. Re‐ search progress of plant WRKY transcription factor fam‐ ily genes[J]. Shanxi Agricultural Science, 48(07): 1158-1163.)
[2] 陈鸿飞, 邵红霞, 樊胜, 等 . 2016. 苹果全基因组多聚半乳糖醛酸酶基因家族的鉴定及进化分析[J]. 园艺学报, 43(10): 1863-1877.
(Chen H F, Shao H X, Fan S, et al.2016. Identification and evolutionary analysis of apple genome-wide polygalacturonase gene family[J]. Journal of Horticulture, 43(10): 1863-1877.)
[3] 谷彦冰, 冀志蕊, 迟福梅, 等 . 2015. 苹果 WRKY 基因家族生物信息学及表达分析[J]. 中国农业科学, 48(16): 3221-3238.
(Gu Y B, Ji Z R, Chi F M, et al.2015. Bioinfor‐ matics and expression analysis of apple WRKY gene family[J]. China Agricultural Science, 48(16): 3221-3238.)
[4] 廖伯寿, 殷艳, 马霓 . 2018. 中国油料作物产业发展回顾与展望[J]. 农学学报, 8(01): 107-112.
(Liao B S, Yin Y, Ma N.2018. Review and prospect of China's oil crop indus‐ try[J]. Journal of Agronomy, 8(01): 107-112.)
[5] 刘越 .2018. 西瓜 WRKY 家族基因分析及低温响应 WRKY 基因功能鉴定[D]. 硕士学位论文, 华中农业大学, 导师: 孔秋生, pp. 73. (Liu Y. 2018. Gene analysis of wa‐ termelon WRKY family and functional identification of low temperature response WRKY gene[D]. Thesis for M. S., Huazhong Agricultural University, Supervisor: Kong Q S, pp. 73.)
[6] 任媛, 赵玉洁, 张心慧, 等 . 2020. 石榴 WRKY 基因家族全基因组鉴定与表达分析[J]. 西北植物学报, 40(02): 218-231.
(Ren Y, Zhao Y J, Zhang X H, et al.2020. Whole genome identification and expression analysis of pome‐ granate WRKY gene family[J]. Northwest Botanical Journal, 40(02): 218-231.)
[7] 汤青云, 钟桐生, 汤建国, 等 . 2004. 山苍子中油脂的提取与利用[J]. 湘南学院学报 , 25(05): 61-63.
(Tang Q Y, Zhong T S, Tang J G, et al.2004. Extraction and utiliza‐ tion of oil from Litsea cubeba[J]. Journal of Xiangnan University, 25(05): 61-63.)
[8] 袁雪丽, 汪阳东, 黄兴召, 等 . 2020. 基于数量化理论对山苍子立地类型划分及评价[J]. 西北林学院学报, 35(05):91-96.
(Yuan X L, Wang Y D, Huang X Z, et al.2020. Classification and evaluation of site types of Litsea cube- ba based on quantitative theory[J]. Journal of Northwest Forestry University, 35(05): 91-96)
[9] 张爱华, 唐春艳, 胡楠, 等 . 2020. 我国山苍子产业发展现状及对策[J]. 生物质化学工程, 54(06): 25-32.
(Zhang A H, Tang C Y, Hu N, et al.2020. Development status and countermeasures of Litsea cubeba industry in China[J]. Biomass Chemical Engineering, 54(06): 25-32.)
[10] 张婷婷, 田云, 卢向阳 . 2014. WRKY 转录因子在植物生长发育中的调控作用[J]. 化学与生物工程, 31(08): 1-5.
(Zhang T T, Tian Y, Lu X Y.2014. Regulatory role of WRKY transcription factor in plant growth and develop‐ ment[J]. Chemical and Bioengineering, 31(08): 1-5.)
[11] 周静, 曾玫艳, 安新民 . 2019. 杨树 WRKY 基因家族鉴定及其干旱胁迫响应模式分析[J]. 中国细胞生物学学报,41(11): 2160-2173.
(Zhou J, Zeng M Y, An X M.2019. Identification of poplar WRKY gene family and analy‐ sis of its response model to drought stress[J]. Chinese Journal of Cell Biology, 41(11): 2160-2173.)
[12] Chen Y F, Li L Q, Xu Q, et al.2009. The WRKY6 transcrip‐ tion factor modulates PHOSPHATE1 expression in re‐ sponse to low Pi stress in Arabidopsis[J]. Plant Cell, 21(11): 3554-3566.
[13] Devaiah B N, Karthikeyan A S, Raghothama K G.2007.WRKY75 transcription factor is a modulator of phos‐ phate acquisition and root development in Arabidopsis [J]. Plant Physiology, 143(4): 1789-1801.
[14] Eulgem T, Rushton P J, Robatzek S, et al.2000. The WRKY superfamily of plant transcription factors[J]. Trends in PlantScience, 5(5): 199-206.
[15] Fei X T, Hou L X, Shi J W, et al.2018. Patterns of drought re‐ sponse of 38 WRKY transcription factors of Zanthoxy- lum bungeanum Maxim[J]. International Journal of Molecular Sciences, 20(1): 68.
[16] Janiak A, Kwasniewski M, Sowa M, et al.2019. Insights into barley root transcriptome under mild drought stress with an emphasis on gene expression regulatory mechanisms[J]. International Journal of Molecular Sciences, 20(24):6139.
[17] Jiang Y, Deyholos M K.2009. Functional characterization of Arabidopsis NaCl inducible WRKY25 and WRKY33 transcription factors in abiotic stresses[J]. Plant Molecular Biology, 69(1-2): 91-105.
[18] Kun G, Ting Z, Ying P H, et al.2020. Transcription factor WRKY23 is involved in ammonium induced repression of Arabidopsis primary root growth under ammonium toxicity[J]. Plant Physiology and Biochemistry, 150(02):90-98.
[19] Koes R, Verweij W, Quattrocchio F.2005. Flavonoids: A colorful model for the regulation and evolution of biochem‐ ical pathways[J]. Trends in Plant Science, 10(5): 236-242.
[20] Li L, Mu S H, Cheng Z C, et al.2017. Characterization and expression analysis of the WRKY gene family in moso bamboo[J]. Scientific Reports, 7(1): 6675.
[21] Li S J, Fu Q T, Huang W D, et al.2009. Functional analysis of an Arabidopsis transcription factor WRKY25 in heat stress[J]. Plant Cell Reports, 28(4): 683-693.
[22] Li W, Tian Z X, Yu D Q.2015. WRKY13 acts in stem devel‐ opment in Arabidopsis thaliana[J]. Plant Science: An International Journal of Experimental Plant Biology, 236(04): 205-213.
[23] Ling J, Jiang W J, Zhang Y, et al.2011. Genome wide analysis of WRKY gene family in Cucumis sativus[J]. BioMed Central, 12(1): 471.
[24] Liu F, Li X, Wang M, et al.2018. Interactions of WRKY15 and WRKY33 transcription factors and their roles in the resistance of oilseed rape to Sclerotinia infection[J]. Plant Biotechnology Journal, 16(4): 911-925.
[25] Lv B, Wu Q, Wang A, et al.2020. A WRKY transcription fac‐ tor, FtWRKY46, from tartary buckwheat improves salt tolerance in transgenic Arabidopsis thaliana[J]. Plant Physiology and Biochemistry, 147(12): 43-53.
[26] Mehanathan M, Bonthala V S, Rohit K, et al.2015. Global analysis of WRKY transcription factor superfamily in Setaria identifies potential candidates involved in abiot‐ ic stress signaling[J]. Frontiers in Plant Science, 6(09):910.
[27] Qi B M, Zheng L X, Zhan D C, et al.2019. GmWRKY16 enhances drought and salt tolerance through an ABA-mediated pathway in Arabidopsis thaliana[J]. Frontiers in Plant Science, 9(10): 1979.
[28] Rushton P J, Somssich I E, Ringler P, et al.2010. WRKY transcription factors[J]. Trends in Plant Science, 15(5): 247-258.
[29] Su T, Xu Q, Zhang F C, et al.2015. WRKY42 modulates phosphate homeostasis through regulating phosphate translocation and acquisition in Arabidopsis[J]. Plant Physiology, 167(4): 1579-1591.
[30] Thielmann J, Muranyi P.2019. Review on the chemical com‐ position of Litsea cubeba essential oils and the bioactivi‐ ty of its major constituents citral and limonene[J]. Jour‐ nal of Essential Oil Research, 31(5): 361-378.
[31] Tian T Z, Jin Z, Li S L, et al.2015. Expression and functional analysis of WRKY transcription factors in Chinese wild hazel, Corylus heterophylla Fisch[J]. PLOS ONE, 10(8): e0135315.
[32] van Verk Marcel C, Pappaioannou D, Neeleman L, et al.2008.A novel WRKY transcription factor is required for in‐ duction of PR-1a gene expression by salicylic acid and bacterial elicitors[J]. Plant Physiology, 146(4): 1983-1995.
[33] Wang P, Xu X, Tang Z, et al.2018. OsWRKY28 regulates phosphate and arsenate accumulation, root system archi‐ tecture and fertility in rice[J]. Frontiers in Plant Science,9(09): 1330.
[34] Wang Y, Li Y, He S P, et al.2019. A cotton (Gossypium hirsutum) WRKY transcription factor (GhWRKY22) participates in regulating anther/pollen development[J]. Plant Physiology and Biochemistry, 141(06): 231-239.
[35] Xie T, Chen C, Li C, et al.2018. Genome-wide investigation of WRKY gene family in pineapple: Evolution and ex‐ pression profiles during development and stress[J]. BioMed Central, 19(1): 2142-2155.
[36] Xu Q, Feng W J, Peng H R, et al.2014. TaWRKY71, a WRKY transcription factor from wheat, enhances toler‐ ance to abiotic stress in transgenic Arabidopsis thaliana [J]. Cereal Research Communications, 42(7426): 47-57.
[37] Zhang F, Wang F, Yang S, et al.2019. MdWRKY100 encodes a group Ⅰ WRKY transcription factor in Malus domestica that positively regulates resistance to Colletotrichumgloeosporioides infection[J]. Plant Science, 286(06): 68-77.
[38] Zhang H, Zhao M, Song Q, et al.2016a. Identification and function analyses of senescence associated WRKYs in wheat[J]. Biochemical and Biophysical Research Com‐ munications, 474(4): 761-767.
[39] Zhang Y, Yu H, Yang, et al.2016b. CsWRKY46, a WRKY transcription factor from cucumber, confers cold resis‐ tance in transgenic-plant by regulating a set of cold- stress responsive genes in an ABA-dependent manner[J]. Plant Physiology and Biochemistry, 108(08): 478-487.
[40] Zhou Q Y, Tian A G, Zou H F, et al.2008. Soybean WRKY ‐ type transcription factor genes, GmWRKY13, Gm- WRKY21, and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants[J].Plant Biotechnology Journal, 6(5): 486-503. |
|
|
|