|
|
Research Progress of Genetic Modification Technology in the Breeding of High-quality Sugarcane (Saccharum officinarum) Varieties |
DONG Gang-Gang1,2, WANG Ying1,2, HAN Cheng-Gui1,2,* |
1 College of Plant Protection, China Agricultural University, Beijing 100193, China; 2 Key Laboratory of Pest Monitoring and Green Management, Ministry of Agriculture and Rural Affairs, Beijing 100193, China |
|
|
Abstract Sugarcane (Saccharum officinarum), as an important global sugar crop and industrial raw material crop, has been successfully commercialized in more than 100 countries. The high-quality and sustainable development of the sugarcane industry has important strategic significance for the effective supply of global sugar and the sustainable development of the green energy economy. In recent years, the sugarcane industry, which relies on traditional hybrid breeding technology, has encountered development bottlenecks. With the rapid development of modern biological technology, genetic modification technology has emerged in many fields. Genetic modification technology refers to the specific modification or improvement of target genes through genetic engineering, so as to realize the change of functional traits. Sugarcane is one of the crops with the highest safety level of GMOs, reporter genes and selectable marker genes based on functional genomics have promoted the breeding of high-quality sugarcane varieties in terms of disease resistance, insect resistance, herbicide resistance, cold resistance, and drought resistance. In addition, transgenic technology has also achieved fruitful results in increase sucrose content, improving sucrose quality, and research on energy sugarcane based on bioreactors. Gene editing technologies represented by genome assembly, genomics- assisted breeding (GAB), multi-allelic mutagenesis and creation of loss-of-function phenotypes have performed well in sugarcane functional genome research and new material creation. This paper comprehensively reviews the research progress of genetic modification technology in the above-mentioned sugarcane fields, focusing on the development and commercialization of multivalent fusion transgenic sugarcane with multiple excellent traits. This review provides reference for the breeding and quality improvement of high-quality sugarcane varieties in my country, and promote the high-quality and sustainable development of sugarcane industry of China.
|
Received: 24 August 2021
|
|
|
|
|
[1] Anisur R.2013. TERF1 和 TSRF1 转基因甘蔗的抗旱耐盐研究[D]. 博士学位论文, 中国农业科学院, 导师: 闫艳春, pp. 25-133. (Anisur R.2013. Generation of transgenic sugarcane (Saccharum officinarum) expressing TERF1 and TSRF1 and characterization of its tolerance to drought and salt[D]. Thesis for Ph. D., Chinese Academy of Agricultural Sciences, Supervisor: Yan Y C, pp. 25-133.) [2] 邓智年, 魏源文, 潘有强, 等 . 2012. 甘蔗抗虫转基因研究进展[J]. 南方农业学报 , 43(10): 1452-1456. (Deng Z N,Wei Y W, Pan Y Q, et al.2012. Research progress on insect resistant transgenic sugarcane[J]. Journal of Southern Argiculture, 43(10): 1452-1456.) [3] 冯翠莲, 张树珍 . 2020. 抗虫转基因甘蔗的培育及其抗性丧失的防控策略[J]. 生物技术通报 , 36(07): 209-219. (Feng C L, Zhang S Z.2020. Breeding of transgenic insect-resistant sugarcane and strategies for preventing the its resistance to insects from loss[J]. Biotechnology Bulletin, 36(07): 209-219.) [4] 顾丽红, 张树珍, 杨本鹏, 等 . 2008. 几丁质酶和 β-1, 3-葡聚糖酶基因导入甘蔗[J]. 分子植物育种, 6(2): 277-280. (Gu L H, Zhang S Z, Yang B P, et al.2008. Introduction of chitin and β-1, 3-glucan into sugarcane[J]. Molecular Plant Breeding, 6(2): 277-280.) [5] 何炜, 周平, 张建福, 等 . 2012. 甘蔗果糖-6-磷酸,2-激酶/果糖-2,6-二磷酸酯酶基因(F2KP)的克隆及其功能研究[J]. 农业生物技术学报, 20(4): 347-355. (He W, Zhou P, Zhang J F, et al.2012. Cloning and function analysis of the fructose-6-phosphate, 2-kinase/fructose-2, 6-bisphosphatase gene (F2KP) from sugarcane(Saccharum officinarum L.)[J]. Journal of Agricultural Biotechnology, 20(4): 347-355.) [6] 孔冉 .2012. KP4 基因遗传转化甘蔗的研究[D]. 硕士学位论文, 海南大学, 导师: 张树珍, pp. 1-72. (Kun R.2012. The study of KP4 gene genetic transformation of sugarcane(Saccharum officinarum L.) [D]. Thesis for M. S., Hainan Univeristy, Supervisor: Zhang S Z, pp. 1-72.) [7] 连玲, 叶冰莹, 陈如凯, 等 . 2012. 甘蔗尿苷二磷酸葡萄糖焦磷酸化酶基因(UGPase)转化拟南芥及转基因植株的生理特性分析[J]. 农业生物技术学报 , 20(5): 481-488. (Lian L, Ye B Y, Cheng R K, et al.2012. Transformation of UDP-glucose pyrophosphorylase gene (UGPase) from Saccharum officinarum into Arabidopsis thaliana and analysis of physiological characteristics of transgenic plants[J]. Journal of Agricultural Biotechnology, 20(5): 481-488.) [8] 林敏 .2021. 农业生物育种技术的发展历程及产业化对策[J]. 生物技术进展, 11(04): 405-417. (Lin M.2021. The development course and industrialization countermeasure of agricultural biological breeding technology[J]. Current Biotechnology, 11(04): 405-417.) [9] 刘晓雪, 王沈南, 郑传芳 . 2013. 2015—2030 年中国食糖消费量预测和供需缺口分析[J]. 农业展望, 2: 71-75. (Liu X X, Wang S N, Zheng C F.2013. 2015-2030 China's sugar consumption forecast and supply-demand gap analysis[J]. Agricultural Outlook, 2: 71-75.) [10] 卢双楠, 李粲, 滕峥, 等 . 2012. 高山离子芥冷诱导基因转化甘蔗二元植物表达载体构建[J]. 南方农业学报, 43(9): 1262-1268. (Lu S N, Li C, Teng Z, et al.2012. Construction of bivalent plant expression vector with coldin‐duced gene of Chorispora bungeana in sugarcane[J]. Journal of Southern Argiculture, 43(9): 1262-1268.) [11] 罗遵喜, 杨志才, 吕苏珊, 等 . 2009. 美洲商陆抗病毒蛋白基因遗传转化甘蔗的研究[J]. 热带作物学报 , 30(11): 1646-1650. (Luo Z X, Yang Z C, Lu S S, et al.2009. Ge‐netic transformation of pokeweed antiviral protein gene into sugarcane[J]. Chinese Journal of Tropical Crops, 30(11): 1646-1650.) [12] 沈林波 .2012. 紫花苜蓿防御基因 MsDef1 转化甘蔗及抗病转基因植株的筛选[D]. 硕士学位论文, 海南大学, 导师: 张树珍, pp. 1-83. (Shen L B.2012. Medicago sativa plant defensins gene (MsDef1) genetic transformation of sugarcane and scaning of disease-resistant transgenic plants[D]. Thesis for M. S., Hainan Univeristy, Supervisor: Zhang S Z, pp. 1-83.) [13] 滕峥, 李鸣扩, 崔永祯, 等 . 2014. 农杆菌介导冷调节基因 (Cbcorl5a)遗传转化甘蔗体系的建立[J]. 南方农业学报 , 45(8): 1333-1339. (Teng Z, Li M K, Cui Y Z, et al.2014. Establishment of Agrobacterium-mediated cold regulatory gene (Cbcorl5a) genetic transformation system in sugarcane[J]. Journal of Southern Agriculture, 45(8): 1333-1339.) [14] 王俊刚, 杨本鹏, 张树珍, 等 . 2009. 无机焦磷酸化酶基因转化甘蔗的遗传研究[J]. 生物技术通报 , 09: 73-77. (Wang J G, Yang B P, Zhang S Z, et al.2009. Genetic transformation of inorganic pyrophosphatase gene of sugarcane[J]. Biotechnology Bulletin, 09: 73-77.) [15] 王继华, 曹干, 安康, 等 . 2008. 抗虫转基因甘蔗研究进展[J]. 广东农业科学, (S1): 88-90. (Wang J H, Cao G, An K, et al. 2008. Research progress on insect-resistant transgenic sugarcane[J]. Guangdong Agricultural Sciences, (S1): 88-90.) [16] 杨川毓, 施肖堑, 张铃, 等 . 2012. 抗花叶病转 SrMV-P1 基因甘蔗的活性氧代谢分析[J]. 热带作物学报 , 33(6): 1101-1106. (Yang C Y, Shi X Z, Zhang L, et al.2012. Analysis of active oxygen metabolism in transgenic sugarcane mediated with SrMV-P1 gene[J]. Acta Tropical Crops, 33(6): 1101-1106.) [17] 姚伟, 余爱丽, 徐景升, 等 . 2004. 转 ScMV-CP 基因甘蔗的分子生物学分析与鉴定[J]. 分子植物育种, 2(1): 13-18. (Yao W, Yu A I, Xu J S, et al.2004. Analysis and identification for transgenic sugarcane of ScMV-CP gene[J]. Molecular Plant Breeding, 2(1): 13-18.) [18] 叶颉, 阙友雄, 许莉萍 . 2015. 中国转基因甘蔗商业化的现实条件与策略分析[J]. 科技管理研究, 35(12): 33-39. (Ye J, Que Y X, Xu L P.2015. Analysis on the realistic conditions and strategies of commercialization of genetical‐ly modified sugarcane in China[J]. Science and Technology Management Research, 35(12): 33-39.) [19] 周秋娟, 邹承武, 姚姿婷, 等 . 2018. CRISPR/Cas9 介导的轮枝镰刀菌基因编辑系统的构建[C]. 中国植物病理学会 2018 年学术年会论文集 . 中国植物病理学会, 北京, pp.43. (Zhou Q J, Zhou C W, Yao Z T, et al.2018. Construction of a CRISPR/Cas9-mediated gene editing system for Fusarium verticillium[C]. Proceedings of the 2018 Annual Conference of the Chinese Society of Plant Pathology. Chinese Society of Plant Pathology, Beijing, pp.43.) [20] Arencibia A, Vazquez R, Prieto D, et al.1996. Transgenic sugarcane (Saccharum officinarum L.) plants are tolerant to stem borer (Diatraea saccharalis F.) attack despite the low expression levels of cry1A(b) gene from B. thuringiensis var. kurstaki HD-1[J]. Biotechnologia Aplicada, 13(2): 1-3. [21] Arencibia A, Vazquez R I, Prieto D, et al.1997. Transgenic sugarcane plants resistant to stem borer attack[J]. Molecular Breeding, 3(4): 247-255. [22] Arruda P.2012. Genetically modified sugarcane for bioenergy generation[J]. Current Opinion in Biotechnology, 23(3): 315-322. [23] Bagyalakshmi, K, Viswanathan, R.2020. Identification of the RNA silencing suppressor activity of sugarcane streakmosaic virus P1 gene[J]. Virusdisease, 31, 333-340. [24] Basso M F, Monteiro Arraes F B, Grossi-de-Sa M, et al.2020.Insights into genetic and molecular elements for transgenic crop development[J]. Frontiers in Plant Science, 11: 509. [25] Bonnett G D, Olivares-villegas J J, Berding N, et al.2011.Sugarcane sexual reproduction in a commercial environment: research to underpin regulatory decisions for genetically modified sugarcane[J]. International Sugar Journal, 113(1347): 214-218. [26] Brevault T, Heuberger S, Zhang M, et al.2013. Potential shortfall of pyramided transgenic cotton for insect resistance management[J]. Proceedings of the National Academy of Sciences of the USA, 110(15): 5806-5811. [27] Brich R G, Bower R, Elliott A.2000. Regulation of transgene expression: Progress towards practical development in sugarcane, and implication for other plant species[J]. Developments in Plant Genetics and Breeding. 5: 118-125. [28] Budeguer F., Enrique R., Perera M. F.et al.2021. Genetic transformation of sugarcane, current status and future prospects[J]. Frontiers in Plant Science, 12: 768609. [29] Butterfield M K, Irvine J E, Valdez Garza M, et al.2002. Inheritance and segregation of virus and herbicide resistance transgenes in sugarcane[J]. Theoretical and Applied Genetics, 104(5): 797-803. [30] Cheavegatti-Gianotto A, de Abreu H M C, Arruda P, et al.2011. Sugarcane (Saccharum X officinarum): A reference study for the regulation of genetically modified cultivars in brazil[J]. Tropical Plant Biology, 4(1): 62-89. [31] Chen J, Khan Q, Sun B, et al.2021. Overexpression of sugarcane SoTUA gene enhances cold tolerance in transgenic sugarcane[J]. Agronomy Journal, 113: 4993-5005. [32] Chen P H.2010. A review of existing regulations for GM crops and progress made on GM sugarcane research in China[C]. International Society of Sugar Cane Technologists. Proceedings of the XXVIIIth Congress, Mexico, 117. [33] Chen W H, Gartland K M A, Davey M R, et al.1987. Transformation of sugarcane protoplasts by direct uptake of a selectable chimeric gene[J]. Plant Cell Reports, 6(4): 297-301. [34] Cristofoletti P T, Kemper E L, Capella A N, et al.2018. Development of transgenic sugarcane resistant to sugarcane borer[J]. Tropical Plant Biology, 11: 17-30. [35] Christy L A, Arvinth S, Sarvannakumar M, et al.2009. Engineering sugarcane cultivars with bovine pancreatic trypsin inhibitor (aprotinin) gene for protection against topborer (Scirpophaga excerptalis Walker)[J]. Plant Cell Re‐ports, 28: 175-184. [36] Damaj M B, Jifon J L, Woodard S L, et al.2020. Unprecedented enhancement of recombinant protein production in sugarcane culms using a combinatorial promoter stacking system[J]. Scientific Reports, 10: 13713. [37] Eid A, Mohan C, Sanchez S, et al.2021. Multiallelic, targeted mutagenesis of magnesium chelatase with CRISPR/ Cas9 provides a rapidly scorable phenotype in highly polyploid sugarcane[J]. Frontiers in Genome Editing, 3: 654996. [38] Enrique R, Kurth D, Ibarra-Laclette E.2021. Identification of transgene flanking sequences in a pre-market safety assessed sugarcane in Argentina[J]. Crop Breeding and Applied Biotechnology, 21(2): e36862133. [39] Falco M C, Silva-Filho M C.2003. Expression of soybean proteinase inhibitors in transgenic sugarcane plants: Ef‐fects on natural defense against Diatraea saccharalis[J].Plant Physiology and Biochemistry, 41(8): 761-766. [40] Falco M C, Tulmann N A, Ulian E C.2000. Transformation and expression of a gene for herbicide resistant in a Bra‐zilian sugarcane[J]. Plant Cell Reports, 19(12): 301-304. [41] Feng C, Wan Y, Wang J, et al.2021. Establishment of a transformant-specific detection method for Cry1Ac-2A-gnatransgenic sugarcane BCG-17[J]. Biotechnology Bulletin, 37(5): 248-258. [42] Feng C, Zhang S.2020. Breeding of transgenic insect-resistant sugarcane and strategies for preventing the its resistance to insects from loss[J]. Biotechnology Bulletin, 36(7): 209-219. [43] Feng Z Y, Zhang B T, Ding W N, et al.2013. Efficient genome editing in plants using a CRISPR/ Cas system[J]. Cell Research, 23(6096): 1229-1232. [44] Gabriel C, Fernhout J, Fichtner F, et al.2021. Genetic manipulation of trehalose-6-phosphate synthase results in changes in the soluble sugar profile in transgenic sugarcane stems[J]. Plant Direct, 5(11). [45] Garbatti Factor B, de Moura Manoel Bento F, Figueira A.2022. Methods for delivery of dsRNAs for agricultural pest control: The case of lepidopteran pests[J]. Methods in Molecular Biology (Clifton, N.J.) 2360: 317-345. [46] Groenewald J H, Botha F C.2008. Down-regulation of pyrophosphate: Fructose 6-phosphate 1-phosphotransferase (PFP) activity in sugarcane enhances sucrose accumula‐tion in immature internode[s J]. Transgenic Research, 17(1): 85-92. [47] Hidayat W N, Apriasti R, Addy H S, et al.2021. Distinguishing resistances of transgenic sugarcane generated from RNA interference and pathogen-derived resistance approaches to combating sugarcane mosaic virus[J]. Indonesian Journal of Biotechnology, 26(2): 107-114. [48] Ingelbrecht I L, Irvine J E, Mirkov T E.1999. Posttranscriptional gene silencing in transgenic sugarcane. Dissection of homology-dependent virus resistance in a monocot that has a complex polyploid genome[J]. Plant Physiol‐ogy, 119(4): 1187-1198. [49] Iqbal A, Khan R S, Khan M A, 2021. Genetic engineering approaches for enhanced insect pest resistance in sugarcane[J]. Molecular Biotechnology, 63(7): 557-568. [50] Jain M, Chengalrayan K, Abouzid A, et al.2007. Prospecting the utility of a PMI/mannose selection system for the re‐covery of transgenic sugarcane (Saccharum spp. hybrid) plants[J]. Plant Cell Reports, 26(5): 581-590. [51] Joyce P A, Dinh S Q, Burns E M, et al.2013. Sugar from genetically modified sugarcane: Tracking transgenes, transgene products and compositional analysis[C]. International Society of Sugar Cane Technologists: Proceed‐ings of the XXVIIIth Congress, Mexico, pp. 1014-1022. [52] Kang Y J.2019. Sugarcane ORF finder: The web-application for mining genes from sugarcane genome[J]. Plant Biotechnology Reports, 13(5): 553-558. [53] Kannan B, Jung JH, Moxley GM, et al.2018. TALEN-mediated targeted mutagenesis of more than 100 COMT copies/alleles in highly polyploid sugarcane improves saccharification efficiency without compromising biomass yield[J]. Plant Biotechnology Journal, 16(4): 856-866. [54] Khan M S, Shah S U A, Ullah M.2021. Genetic engineering of sugarcane with the rice tonoplast H+-PPASE (OVP2) gene to improve sucrose content and salt tolerance[J].Pakistan Journal of Botany 53(3): 813-821. [55] Kumar D, Long S P, Arora A, et al.2021. Techno-economic feasibility analysis of engineered energycane-based biorefinery co-producing biodiesel and ethanol[J]. GCB Bioenergy, 13(9): 1498-1514. [56] Lakshmanan P, Geijskes R J, Aitken K S, et al.2005. Sugarcane biotechnology: The challenges and opportunities[J]. In Vitro Cellular&Developmental Biology-Plant, 41(4): 345-363. [57] Leibbrandt N B, Snyman S J.2003. Stability of gene expression and agronomic performance of a transgenic herbicide-resistant sugarcane line in South Africa[J]. Crop Science, 43(2): 671-677. [58] Li H R, Olson M, Lin G F, et al.2013a. Bacillus thuringiensis Cry34Ab1/Cry35Ab1 interactions with western corn rootworm midgut membrane binding sites[J]. PLOS ONE, 8(1): 53079. [59] Li, J F, Norville J E, Aach J, et al.2013b. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9[J]. Nature Biotechnoly, 31(8): 688-691. [60] Lu Y H, Rijzaani H, Karcher D, et al.2013. Efficient metabolic pathway engineering in transgenic tobacco and tomato plastids with synthetic multigene operons[J]. Proceedings of the National Academy of Sciences of the USA, 110(8): E623-632. [61] Ma H, Albert H H, Paull R, et al.2000. Metabolic engineering of invertase activities in different subcellular compartments affects sucrose accumulation in sugarcane cells[J]. Australian Journal of Plant Physiology, 27(11):1021-1030. [62] Manickavasagam M, Ganapathi A, Anbazhagan V R, et al.2004. Agrobacterium-mediated genetic transformation and development of herbicide-resistant sugarcane (Saccharum species hybrids) using axi-llary buds[J]. Plant Cell Reports, 23(3): 134-143. [63] Mao Y, Zhang H, Xu N, et al.2013. Application of the CRISPR-Cas system for efficient genome engineering in plants[J]. Molecular Plant, 6: 2008-2011. [64] McQualter R B, Harding R M, Dale J L, et al.2001. Virus derived transgenes confer resistance to Fiji disease in transgenic sugarcane plants[M]. Hogarth DM. Interna‐tional Society of Sugar Cane Technologists: Proceedings of the XXIV Congress, Brisbane: Australia, pp. 584-585. [65] Melgar M, Lamport P.2008. Worldwide advances in sugarcane transgenesis[J]. Sugar Journal, 70(11): 11-16. [66] Mohan C.2016. Genome editing in sugarcane: Challenges ahead[J]. Frontiers in Plant Science, 7: 1542. [67] Mohan C, Easterling M, Yau Y.2021a. Gene editing technologies for sugarcane improvement: Opportunities and limitations[J]. Sugar Tech, 24(1):369-385. [68] Mohan C, Shibao P Y T, de Paula F F P.2021b. hRNAi-mediated knock-down of Sphenophorus levis V-ATPase E in transgenic sugarcane (Saccharum spp interspecific hy‐brid) affects the insect growth and survival[J]. Plant Cell Reports, 40(3): 507-516. [69] Molinari H B C, Marur C J, Daros E, at al.2007. Evaluation of the stress-inducible production of proline in transgenic sugarcane (Saccharum spp.): Osmotic adjustment, chlorophyll fluorescence and oxidative stress[J]. Physiologia Plantarum, 130(2): 218-229. [70] Moore P H.1987. Anatomy and morphology[M] // Heinz D J (eds.). Sugarcane Improvement through Breeding, Elsevier, Amsterdam, pp. 85-142. [71] Murugan N, Mohan C, Kannan B.2021. RNAi-based gene silencing in sugarcane for production of biofuel[J]. Methods in Molecular Biology, 2290: 141-155. [72] Narayan J A, Chakravarthi M, Nerkar G.2021. Overexpression of expansin EaEXPA1, a cell wall loosening protein enhances drought tolerance in sugarcane[J]. Industrial Crops and Products, 159: 113035. [73] Nisar A K, Renesh B, Arnold P, et al.2013. Identification of coldresponsive genes in energycane for their use in genetic diversity analysis and future functional marker development[J]. Plant Science, 211: 122-131. [74] Nutt K A, Allsopp P G, McGhie T K.1999. Transgenic sugarcane with increased resistant to canegrubs[C]. Proceedings of the Conference of Australian Society of Sugarcane Technologists. Brisbane: Watson Ferguson and Co, pp. 171-176. [75] Pan C T, Wu X C, Markel K, et al.2021. CRISPR-Act3.0 for highly efficient multiplexed gene activation in plants[J]. Nature Plants, 7(7): 942-953. [76] Purnell M P, Petrasovits L A, Nielsen L K, et al.2007. Spatiotemporal characterization of polyhydroxybutyrate accumulation in sugarcane[J]. Plant Biotechnology Journal, 5(1): 173-184. [77] Qamar Z, Nasir I A, Abouhaidar M G, et al.2021. Novel approaches to circumvent the devastating effects of pests on sugarcane[J]. Scientific Reports, 11(1): 12428. [78] Qi Y, Gao X, Zeng Q.2021. Sugarcane breeding, germplasm development and related molecular research in China[J]. Sugar Tech, 24: 73-85. [79] Rafaela R R, BarBara A D B da C, Polyana K M, et al.2014.nduced over- expression of AtDREB2A CA improves drought tolerancein sugarcane[J]. Plant Science, 221- 222: 59-68. [80] Riaz S, Nasir I A, Bhatti M U.2020. Resistance to Chilo infus‐catellus (Lepidoptera: Pyraloidea) in transgenic lines of sugarcane expressing Bacillus thuringiensis derived Vip3A protein[J]. Molecular Biology Reports, 47(4): 2649-2658. [81] Sanskriti V, Surbhi K, Virender K, et al.2019. Genome editing in plants: Exploration of technological advancements and challenges[J]. Cells, 8(11): 1386. [82] Sereno M L, Infante S, Cheavegatti-Gianotto A.2020. Evaluation of the effects of sugarcane processing on the presence of GM DNA and protein in sugar[J]. GM Crops & Food, 11(3): 171-183. [83] Setamou M, Bernal J S, Legaspi J C, et al.2002. Evaluation of lectin-expressing transgenic sugarcane against stalkborers (Lepidoptera: Pyralidae): Effects on life history parameters[J]. Journal of Economic Entomology, 95(2): 469-477. [84] Sharma S, Chauhan A, Dobbal S.2022. Biology of plants coping stresses: Epigenetic modifications and genetic engineering[J]. South African Journal of Botany, 144: 270-283. [85] Souza W R D, Oliveira N G D, Vinecky F.2021. Development of drought-tolerant sugarcane overexpressing the AtDREBZA CA gene[J]. Jircas Working Report, 91: 89-98. [86] Srikanth J, Subramonian N, Premachandran M N.2011. Advances in transgenic research for insect resistance in sugarcane[J]. Tropical Plant Biology, 4(1): 52-61.Sruthy M A, Narayan J A, Syamaladevi D P, et al. 2015. Erian-thus arundinaceus HSP70(EaHSP70) overexpression in‐creases drought and salinity tolerance in sugarcane, 232: 23-34. [87] Tabashnik B E, Dennehy T J, Carriere Y.2005. Delayed resistance to transgenic cotton in pink bollworm[J]. Proceedings of National Academy of Sciences of the USA, 102(43): 15389-15393. [88] Tabashnik B E, Gassmann A J, Crowder D W, et al.2008. Insect resistance to Bt crops: Evidence versus theory[J]. National Biotechnol, 26(2): 199-202. [89] Tang H, Yu Q, Li Z.2021. A PIP-mediated osmotic stress signaling cascade plays a positive role in the salt tolerance of sugarcane[J]. BMC Plant Biology, 21(1): 589. [90] Tomov B W, Bernal J S, Vinson S B.2003. Impacts of transgenic sugarcane expressing GNA lectin on parasitism of Mexican rice borer by Parallorhogas pyralophagus (Marsh) (Hymenoptera:Braconidae)[J]. Environmental Entomolo–gy,32(4):866-872. [91] van der Merwe M J, Groenewald J H, Kossmann J, et al.2010. Downregulation of pyrophosphate: D-fructose-6- phosphate 1-phosphotransferase activity in sugarcane culms enhances sucrose accumulation due to elevated hexosephosphate level[s J]. Planta, 231(3): 595-608. [92] Varshney R K, Bohra A, Yu J M, et al.2021. Feature review designing future crops: Genomics-assisted breeding comes of age[J]. Trends in Plant Science, 26(6): 631-649. [93] Wang J G, Zhang S Z.2011. Transgenic sugarcane plants expressing Saccharomyces cerevisiae inorganic pyrophosphatase display altered carbon partitioning in their sink stems and increased photosynthetic activity in their source leaves[C]// Castillo RO, Dookun-Saumtally A. Maceió: 10th germplasm & breeding and 7th molecular biology workshop, pp. 63. [94] Wang M L, Goldstein C, Su W, et al.2005. Production of biologically active GM-CSF in sugarcane: A secure biofactory[J]. Transgenic Research, 14(2): 167-178. [95] Wang W, Yang B, Cai W.2016. On application of herbicide resistant gene bar and EPSPS in transgenic sugarcane[J]. [96] Biotechnology Bulletin, 32(3): 73-78. [97] Wang W, Feng X, Wang J.2020a. Establishment of an insect resistance testing method of transgenic sugarcane by imitate free feeding model[J]. Molecular Plant Breeding, 18(22): 7436-7440. [98] Wang W, Yang B, Wang J.2020b. Molecular and toxicity analyses of white granulated sugar and other processing products derived from transgenic sugarcane[J]. Frontiers in Plant Science, 11: 596918. Wang Y, Cheng X, Shan Q, et al. 2014. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew[J]. National Biotechnoly, 32(9): 947-951. [99] Widyaningrum S, Pujiasih D R, Sholeha W.2021. Induction of resistance to sugarcane mosaic virus by RNA interference targeting coat protein gene silencing in transgenic sugarcane[J]. Molecular Biology Reports, 48(3): 3047-3054. [100] Xu L N, Wang Z Y, Zhang J, et al.2010. Cross-resistance of Cry1Ab-selected Asian corn borer to other Cry toxins[J]. Journal of Applied Entomology, 134(5): 429-438. [101] Ye J, Que Y X, Xu L P.2015. Estimation of future prospects for the commercialization of genetically modified sugarcane in china[C]. International Conference on Economics and Management, pp. 135-145. [102] Zhan X Q, Lu Y M, Zhu J K, et al.2021. Genome editing for plant research and crop improvement[J]. Journal of Integrative Plant Biology, 63(1): 3-33. [103] Zhang L H, Xu J L, Birch R G.1999. Engineered detoxification confers resistance against a pathogenic bacterium[J]. Nature Biotechnology, 17(10): 1021-1024. [104] Zhang S Z, Yang B P, Feng C L, et al.2006. Expression of the trehalose synthase gene enhances the drought-tolerance in sugarcane (Saccharum officinarum L.)[J]. Journal of Integrative Plant Biology, 48(4): 453-459. [105] Zhangsun D T, Luo S L, Chen R K, et al.2007. Improved Agrobacterium-mediated genetic transformation of GNA transgenic sugarcane[J]. Biologia (Bratislava), 62(4): 386-393. [106] Zhao Y, Karan R, Altpeter F.2021. Error-free recombination in sugarcane mediated by only 30 nucleotides of homology and CRISPR/Cas9 induced DNA breaks or Cre-recombinase[J]. Biotechnology Journal, 16(6): e2000650. [107] Zhao Y, Kim J Y, Karan R, et al.2019. Generation of a selectable marker free, highly expressed single copy locus as landing pad for transgene stacking in sugarcane[J]. Plant Molecular Biology, 100(3): 247-263. [108] Zhu K, Huang C, Phan T.2021. Overexpression of SoACLA-1 gene confers drought tolerance improvement in sugarcane[J]. Plant Molecular Biology Reporter, 39(3): 489-500. [109] Zhu Y J, McCafferty H, Osterman G, et al.2011. Genetic transformation with untranslatable coat protein gene of Sugarcane yellow leaf virus reduces virus titers in sugar‐can[e J]. Transgenic Research, 20(3): 503-512. |
|
|
|