|
|
Application of CRISPR/Cas9 Mediated Gene Editing in Polyploid Crops |
ZHAO Meng-Yu, ZHANG Li-Jun, JIANG Zheng-Jie, ZHAO Yang* |
State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources/ Guangxi Key Laboratory of Sugarcane Biology/ Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage/ National Demonstration Center for Experimental Plant Science Education, Guangxi University, Nanning 530004, China |
|
|
Abstract Gene editing technology is one of the modern breeding technologies for stable and accurate modification of target genes. CRISPR/Cas9 (clustered regulatory interspaced short palindromic repeats/CRISPR-associated protein 9) system is the most widely used gene editing technology available today.It recognizes target sites of target genes to break the double-stranded DNA and activates DNA damage repair pathway, so as to achieve accurate gene editing. Now CRISPR/Cas9 has been widely used in rice (Oryza sativa), corn (Zea mays),peanut (Arachis hypogaea) and other important crops. In addition, it can be applied to polyploid crops such as wheat (Triticum aestivum), cotton (Gossypium hirsutum) and soybean (Glycine max) which are thought difficult to be edited. In this paper, the principle of CRISPR/Cas9 mediated gene editing system, its application in polyploid crops and existing problems are discussed on the basis of summarizing some achievements. Meanwhile, suggestions for improving gene editing efficiency are also put forward, hoping to provide reference for future research.
|
Received: 09 August 2021
|
|
Corresponding Authors:
*zhaoyang@gxu.edu.cn
|
|
|
|
[1] 陈修贵. 2017. CRISPR/Cas9系统介导的棉花GhCLA1和GhVP基因编辑的研究[D]. 博士学位论文, 华中农业大学, 导师: 叶武威. pp. 17-44. (Chen X G.2017. Study of CRISPR/Cas9-mediated GhCLA1 and GhVP gene editing in cotton[D]. Thesis for Ph.D., Huazhong Agricultural University, Suppervisor: Ye W W, pp. 17-44.) [2] 代文双, 刘会云, 杜庆国, 等. 2021. 组蛋白去乙酰化酶抑制剂(HDACi)对小麦基因编辑效率的影响及转录组学分析[J]. 生物技术通报, 37(1): 2-14. (Dai W S, Liu H Y, Du Q G, et al.2021. Effect of Histone Deacetylase Inhibitor (HDACi) on CRISPR editing efficiency of wheat and transcriptomics analysis[J]. Biotechnology Bulletin, 37(1): 2-14.) [3] 甘卓然, 石文茜, 黎永力, 等. 2020. 大豆生物钟基因GmLNK1/2、GmRVE4/8和GmTOC1 CRISPR/Cas9组织表达分析及敲除靶点的鉴定[J]. 作物学报, 46(08):1291-1300. (Gan Z R, Shi W Q, Li Y L, et al.2020. Identification of CRISPR/Cas9 knockout targets and tissue expression analysis of circadian clock genes GmLNK1/2, GmRVE4/8, and GmTOC1 in soybean[J]. Acta Agronomica Sinica, 46(08):1291-1300.) [4] 郭姗姗, 张冰莹, 何文欣, 等. 2017. 利用CRISPR/Cas9技术构建CREB基因敲除细胞系并探讨CREB对APP基因表达的调控作用[J]. 中国细胞生物学学报, 39(9): 1147-1155. (Guo S S, Zhang B Y, He W X, et al.2017. The establishment of stable CREB gene knock out cell lines with CRISPR/Cas9 technique and the regulatory effects of CREB on APP gene expression[J]. Chinese Journal of Cell Biology, 39(9): 1147-1155.) [5] 胡雪娇, 杨佳, 程灿, 等. 2018. 利用CRISPR/Cas9系统定向编辑水稻SD1基因[J]. 中国水稻科学, 32(3): 219-225. (Hu X J, Yang J, Cheng C, et al.2018. Targeted editing of rice SD1 gene using CRISPR/Cas9 system[J]. Chinese Journal of Rice Science, 32(3): 219-225.) [6] 黄李春, 顾正文, 谈红艳, 等. 2021. CRISPR/Cas9技术编辑Wx基因创制新型糯稻种质[J]. 植物遗传资源学报, 22(03): 789-799. ( Huang L C, Gu Z W, Tan H Y, et al.2021. Creating novel glutinous rice germplasms by editing Wx gene via CRISPR/Cas9 technology[J]. Journal of Plant Genetic Resources, 22(03): 789-799.) [7] 雷海英, 赵青松, 白凤麟, 等. 2020. 利用CRISPR/Cas9鉴定玉米发育相关基因ZmCen[J].中国生物工程杂志, 40(12): 49-57. (Lei H Y, Zhao Q S, Bai F L, et al.2020. Identification of developing-related gene ZmCen using CRISPR/Cas9 in maize[J]. China Biotechnology, 40(12): 49-57.) [8] 李广栋, 张鲁, 富俊才, 等. 2019. 单碱基编辑工具—腺嘌呤碱基编辑器ABE的研究进展[J]. 农业生物技术学报, 27(10): 1831-1839. (Li G D, Zhang L, Fu J C, et al.2019. Advances in research on single base editing tool--adenine base editor ABE[J]. Journal of Agricultural Biotechnology, 27(10): 1831-1839.) [9] 李继洋, 胡燕, 姚瑞, 等. 2019. 基于优化sgRNA系统提高海岛棉CRISPR/Cas9基因组编辑功效的研究[J]. 作物学报, 45(10): 1522-1534. (Li J Y, Hu Y, Yao R, et al.2019. Enhancing CRISPR/Cas9 genomic editing efficiency based on optimization of sgRNA of Gossypium barbadense L.[J]. Acta Agronomica Sinica, 45(10): 1522-1534.) [10] 李苗, 陈晓军, 马斯霜, 等. 2019. 小麦淀粉分支酶CRISPR/Cas9基因敲除系统gRNA表达载体构建[J]. 分子植物育种, 17(20): 6668-6672. (Li M, Chen X J, Ma S S, et al.2019. Expression vector construction of starch branching enzyme gRNA with CRISPR/Cas9 gene knockout system of Triticum aestivum L.[J]. Molecular Plant Breeding, 17(20):6668-6672.) [11] 刘迪, 刘琳琳, 杜海英, 等. 2018. CRISPR/Cas9植物基因编辑系统敲除棉花GhSBP基因表达载体的构建[J]. 分子植物育种, 16(01): 135-139. (Liu D, Liu L L, Du H Y, et al.2018. Construction of expression vector of knocking out GhSBP Gene in Cotton by CRISPR/Cas9 System[J]. Molecular Plant Breeding, 16(01): 135-139.) [12] 罗银, 刘峰. 2020. CRISPR/Cas9技术在作物中的研究及应用进展[J]. 作物研究, 34(6): 588-596. (Luo Y, Liu F.2020. Research and application progress of CRISPR/Cas9 in Crops[J]. Crop Research, 34(6): 588-596.) [13] 聂梦云, 高军平, 罗培, 等. 2016. 基于CRISPR/Cas9技术的烟草NtDXR基因敲除及功能分析[J]. 烟草科技, 49(6):1-7. (Nie M Y, Gao J P, Luo P, et al.2016. CRISPR/Cas9-mediated targeted mutagenesis and function analysis of DXR in Nicotiana tabacum[J]. Tobacco Science and Technology, 49(6):1-7.) [14] 任斌, 严芳, 旷永洁, 等. 2017. 水稻靶标基因单碱基定向替换技术的建立[J]. 中国科学: 生命科学, 47(11): 1177-1185. (Ren B, Yan F, Kuang Y J, et al.2017. A CRISPR/Cas9 toolkit for efficient targeted base editing to induce genetic variations in Rice[J]. Scientia Sinica Vitae, 47(11): 1177-1185.) [15] 谈静, 郭俊杰, 曾杰. 2020. 多倍体植物复杂性状全基因组关联分析研究进展[J]. 分子植物育种, 18(4): 1282-1289. (Tan J, Guo J J, Ceng J.2020. Advance in genome-wide association analysis of complex traits for polyploid plants[J]. Molecular Plant Breeding, 18(4): 1282-1289.) [16] 王艳玲, 孟志刚, 李妍妍, 等. 2017. CRISPR/Cas9编辑棉花精氨酸酶基因促进侧根形成和发育[J]. 中国科学: 生命科学, 47(11): 1200-1203. (Wang Y L, Meng Z G, Li Y Y, et al.2017. Increased lateral root formation by CRISPR/Cas9-mediated editing of arginase genes in Cotton[J]. Scientia Sinica Vitae, 47(11): 1200-1203.) [17] 武林琳, 竹梦婕, 王咪, 等. 2020. CRISPR/Cas9技术在农作物中应用的局限及改进[J]. 现代农业科技, 2020(22): 26-29. (Wu L L, Zhu M J, Wang M, et al.2020. The limitation and lmprovement of CRISPR/Cas9 technology in crops application[J]. Modern Agricultural Science and Technology, 2020(22): 26-29.) [18] 张丹阳, 李卫国. 2020. CRISPR-dCas9在动物基因转录调控和表观遗传修饰中的研究与应用[J].中国生物化学与分子生物学报, 36(7): 776-784. (Zhang D Y, Li W G.2020. The Roles of CRISPR-dCas9 in transcriptional regulation and epigenetic modification in animal cells[J]. Chinese Journal of Biochemistry and Molecular Biology, 36(7): 776-784.) [19] 张敏, 徐胜利, 贺红利, 等. 2021. GmGASA6基因CRISPR-Cas9载体构建及大豆的遗传转化[J]. 吉林师范大学学报(自然科学版), 42(1): 104-110. (Zhang M, Xv S L, He H L, et al.2021. Construction of GmGASA6 CRISPR-Cas9 vector and genetic transformation of Soybean[J]. Journal of Jilin Normal University (Natural Science Edition), 42(1): 104-110.) [20] 张淑娟, 张荣志, 宋国琦, 等. 2020. 小麦Pinb基因启动子区CRISPR/Cas9基因编辑载体的构建[J]. 山东农业科学, 52(1): 1-9. (Zhang S J, Zhang R Z, Song G Q, et al.2020. Construction of promoter region CRISPR/Cas9 genome editing vector of Pinb gene in Wheat[J]. Shandong Agricultural Sciences, 52(1): 1-9.) [21] 郑丽瑶. 2019. 利用CRISPR/Cas9基因编辑技术优化作物育种[J]. 福建热作科技, 44(2): 40-44. (Zheng L Y.2019. Perfect plants to breed by CRISPR/Cas9 gene editing technology[J]. Fujian Science & Technology of Tropical Crops, 44(2): 40-44.) [22] 周冠彤, 雷建峰, 代培红, 等. 2021. 棉花CRISPR/Cas9基因编辑有效sgRNA高效筛选体系的研究[J]. 作物学报, 47(3): 427-437. (Zhou G T, Lei J F, Dai P H, et al.2021. Efficient screening system of effective sgRNA for cotton CRISPR/Cas9 gene editing[J]. Acta Agronomica Sinica, 47(3): 427-437.) [23] Babar U, Gul N, Zhao N, et al.2020. Programmed editing of Rice (Oryza sativa L.) OsSPL16 gene using CRISPR/Cas9 improves grain yield by modulating the expression of pyruvate enzymes and cell cycle proteins[J]. International Journal of Molecular Sciences, 22(1): 249. [24] Bao A, Burritt D J, Chen H F, et al.2019. The CRISPR/Cas9 system and its applications in crop genome editing[J]. Critical Reviews in Biotechnology, 39(3): 321-336. [25] Cai Y P, Chen L, Zhang Y, et al.2020. Target base editing in soybean using a modified CRISPR/Cas9 system[J]. Plant Biotechnology Journal, 18(10): 1996-1998. [26] Du H Y, Zeng X R, Zhao M, et al.2016. Efficient targeted mutagenesis in soybean by TALENs and CRISPR/Cas9[J]. Journal of Biotechnology, 217: 90-97. [27] Eid A, Mohan C, Sanchez Set al.2021. Multiallelic, targeted mutagenesis of magnesium chelatase with CRISPR/Cas9 provides a rapidly scorable phenotype in highly polyploid sugarcane[J].Frontiers in Genome Editing, 3: 654996. [28] Gonatopoulos-Pournatzis T, Aregger M, Brown K R, et al.2020. Genetic interaction mapping and exon-resolution functional genomics with a hybrid Cas9-Cas12a platform[J]. Nature Biotechnology: The Science and Business of Biotechnology, 38(5): 638-648. [29] Li Q Q, Wu G X, Zhao Y P, et al.2020. CRISPR/Cas9-mediated knockout and overexpression studies reveal a role of maize phytochrome C in regulating flowering time and plant height[J]. Plant Biotechnology Journal, 18(12): 2520-2532. [30] Mei Y, Beernink B M, Ellison E E, et al.2019. Protein expression and gene editing in monocots using foxtail mosaic virus vectors[J]. Plant Direct, 3(11): e00181. [31] Morgan S L, Mariano N C, Bermudez A, et al.2017. Manipulation of nuclear architecture through CRISPR-mediated chromosomal looping[J]. Nature Communications, 8(1): 15993. [32] Oz M T, Altpeter A, Karan Ret al.2021. CRISPR/Cas9-mediated multi-allelic gene targeting in sugarcane confers herbicide tolerance[J]. Frontiers in Genome Editing, 3: 673566. [33] Tian S W, Jiang L J, Cui X X, et al.2018. Engineering herbicide-resistant watermelon variety through CRISPR/Cas9-mediated base-editing[J]. Plant Cell Reports, 37(9): 1353-1356. [34] Wang P C, Zhang J, Sun L, et al.2018. High efficient multisites genome editing in allotetraploid cotton (Gossypium hirsutum) using CRISPR/Cas9 system[J]. Plant Biotechnology Journal, 16(1): 137-150. [35] Wang Q Q, Alariqi M N, Wang F Q, et al.2020. The application of a heat-inducible CRISPR/Cas12b (C2c1) genome editing system in tetraploid cotton (G. hirsutum) plants[J]. Plant Biotechnology Journal, 18(12): 2436-2443. [36] Zaidi S S, Mahas A, Vanderschuren H, et al.2020. Engineering crops of the future: CRISPR approaches to develop climate-resilient and disease-resistant plants[J]. Genome biology, 21(1): 289. [37] Zhang L, Wang Y Z, Li Tet al.2021. Target-specific mutations efficiency at multiple loci of CRISPR/Cas9 system using one sgRNA in soybean[J]. Transgenic Research, 30: 51-62. [38] Zhang R, Liu J X, Cha Z Z, et al.2019. Generation of herbicide tolerance traits and a new selectable marker in wheat using base editing[J]. Nature Plants, 5(5): 480-485. [39] Zhang Y W, Bai Y, Wu G H, et al.2017. Simultaneous modification of three homoeologs of TaEDR1 by genome editing enhances powdery mildew resistance in wheat[J]. The Plant Journal, 91: 714-724 [40] Zhao Y, Karan R, Altpeter F.2021. Error-free recombination in sugarcane mediated by only 30 nucleotides of homology and CRISPR/Cas9 induced DNA breaks or Cre-recombinase[J]. Biotechnology Journal, 16(6): e2000650. [41] Zong Y, Wang Y P, Li C, et al.2017. Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion[J]. Nature Biotechnology, 35(5): 438-440. |
|
|
|