|
|
Construction of Overexpression Vector and Functional Verification of Atg5 Gene in Chicken (Gallus gallus) |
HAN Qi, WANG Qian-Qian, XU Yu-Fang, YU Jian-Feng, XU Lu*, GU Zhi-Liang* |
School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, China |
|
|
Abstract Chicken occupies the first place in meat consumption, and excessive lipid deposition will reduce meat quality. Studies have shown that autophagy participates in liver lipid metabolism, improves lipid deposition and regulates lipid metabolism in poultry. This study aims to investigate the effect of autophagy related gene 5 (Atg5) on lipid metabolism related genes in chicken fibroblast cell line (DF-1). According to the amino acid sequence of chicken ATG5 protein in NCBI database, the physical and chemical properties of chicken ATG5 protein were analyzed by ExPASy database. The expression of Atg5 in chicken tissues was detected by qPCR. The overexpressed recombinant plasmid pcDNA3.1-Atg5 was constructed, and the expression of Atg5 was interfered by RNAi technology. The expressions of lipid metabolism-related genes: Acetyl CoA carboxylase (ApoB), fatty acid synthase (FASN), acetyl CoA carboxylase (ACACA), peroxisome proliferator-activated receptor-α (PPARα), forkhead box protein-1 (Foxo1), fatty acid-binding protein 7 (FABP7) and sortilin 1 (Sort1) were detected after interference and overexpression of Atg5. The results showed that chicken ATG5 protein was an unstable protein with relative molecular weight of 32.478 kD. Then Atg5 was expressed in all tissues, and the highest mRNA expression was found in breast muscle tissue. In addition, the overexpression vector pcDNA3.1-Atg5 was successfully constructed, and optimal interfering siRNA was siRNA-330. Overexpression or interference of Atg5 gene affected the expression of other lipid metabolism-related genes. Among them, after overexpression of Atg5, the expression level of ApoB decreased significantly, and the expression level of Sort1 increased significantly, the change of FABP7 was not significant. After interference with Atg5, the expression levels of FABP7 and ApoB were significantly increased, but the change of Sort1 was not significant, and it was speculated that the expression levels of Sort1, FABP7 and ApoB might be potentially related to Atg5. This study provides a reference basis for further study on the function of Atg5 gene in chicken.
|
Received: 27 May 2021
|
|
Corresponding Authors:
*sunnyxl2017@163.com; zhilianggu88@hotmail.com
|
|
|
|
[1] 安闪闪, 傅继华. 2016. 肝脏脂代谢与非酒精性脂肪肝研究进展[J]. 药学研究, 35(004): 230-233. (An S S, Fu J H.2016. Research progress of liver lipid metabolism and nonalcoholic fatty liver disease[J]. Pharmaceutical Research, 35(004): 230-233.) [2] 李婷, 高茹菲, 杨淑敏,等. 2015.自噬相关蛋白ATG5在BPA所致肝脏脂质沉积中的作用研究[J]. 重庆医科大学学报, 040(003): 350-353. (Li T, Gao R F, Yang S M, et al.2015. Role of autophagy associated protein ATG5 in liver lipid deposition induced by BPA[J]. Journal of Chongqing Medical University, 040(003): 350-353.) [3] 李洋, 任路平, 宋光耀. 2017.自噬与肝脏脂代谢[J]. 国际内分泌代谢杂志, 37(2):128-130. (Li Y, Ren L P, Song G Y.2017. Autophagy and liver lipid metabolism[J]. International Journal of Endocrinology and metabolism, 37(2): 128-130.) [4] 刘畅, 陈洪艳, 宿志勇, 等. 2018. ACACA、FHL5、METTL14、FRS2、GYG1基因在高、低脂系肉鸡腹部脂肪组织中的表达差异研究[C]. 中国畜牧兽医学会2018年学术年会禽病学分会第十九次学术研讨会论文集. (Liu C, Chen H Y, Su Z Y, et al.2018. Differential expression of ACACA、FHL5、METTL14、FRS2 and GYG1 genes in abdominal adipose tissue of high and low fat broilers[C].Proceedings of the 19th Symposium of avian disease branch of Chinese society of animal husbandry and veterinary in 2018.) [5] 孙航, 毛明光, 蒋洁兰, 等. 2015. 太平洋鳕Atg5基因的克隆及表达分析[J]. 大连海洋大学学报, 030(005): P.478-483. (Sun H, Mao M G, Jiang J L, et al.2015. Cloning and expression analysis of Atg5 gene from Pacific cod[J]. Journal of Dalian Ocean University, 030(005): 478-483.) [6] 田卫华, 杨丽玉, 李红, 等. 2019. 蛋鸡脂肪代谢相关基因ACACA和FASN表达及调控特性[J]. 农业生物技术学报, 27(02): 94-102. (Tian W H, Yang L Y, Li H, et al.2019. Expression and regulation characteristics of ACACA and FASN genes related to fat metabolism in laying hens[J]. Journal of Agricultural Biotechnology, 27(02):94-102.) [7] 王倩, 谭诗云. 2017. XRCC1 Arg399Gln基因多态性与中国人群肝细胞癌易感性的Meta分析[J]. 临床肿瘤学杂志, 22(004):319-325. (Wang Q, Tan S Y.2017. A meta analysis of XRCC1 Arg399Gln gene polymorphism and susceptibility to hepatocellular carcinoma in Chinese population[J]. Journal of Clinical Oncology, 22(004): 319-325.) [8] 吴媛媛, 王宇祥, 李辉. 2013.鸡肝脏内脂肪代谢相关因子的研究进展[J]. 畜牧与兽医, 45(01): 91-95. (Wu Y Y, Wang Y X, Li H.2013. The research progress of fat metabolism related factors in chicken liver[J]. Animal Husbandry and Veterinary, 45(01): 91-95.) [9] 张业欣,张洁,闫波. 2019.自噬相关基因5在心血管疾病中的研究进展[J].中华老年心脑血管病杂志, 21(7):774-776. (Zhang Y X, Zhnag J, Yan B.2019. Research progress of autophagy related gene 5 in cardiovascular disease[J]. Chinese Journal of Geriatric Heart Brain And Vessel Diseases, 21(7): 774-776.) [10] Alissa P, Stephanie K, Elizabeth G, et al.2018. Tissue distribution, gender- and genotype-dependent expression of autophagy-related genes in Avian species[J]. PLOS ONE, 9(11): e112449. [11] Amengual J, Guo L, Strong A, et al.2018. Autophagy is required for sortilin-mediated degradation of apolipoprotein B100[J]. Circulation Research, 122(4): 568-582. [12] Ariosa A R, Klionsky D J.2016. Autophagy core machinery: Overcoming spatial barriers in neurons[J]. Journal of Molecular Medicine, 94(11): 1-11. [13] Chen B, Sun X J, Zhang Y, et al.2012. Use of inducible Atg5 deletion and expression cell lines in study of the pro-survival function of autophagy under starvation[J]. Biochemical and Biophysical Research Communications, 427(1): 11-17. [14] Cuervo A M, Wong E.2014. Chaperone-mediated autophagy: Roles in disease and aging[J]. Cell Research, 24(001): 92-104. [15] Czaja M J, Ding W X, Donohue T M, et al.2013. Functions of autophagy in normal and diseased liver[J]. Autophagy, 9(8): 1131-1158. [16] Hara T, Nakamura K, Matsui M, et al.2006. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice[J]. Nature, 441(7095): 885-889. [17] Haseeb A, Bai X, Vistro W A, et al.2019. Characterization of in vivo autophagy during avian spermatogenesis[J]. Poultry Science, 98(10): 5089-5099. [18] Hu Z Y, Zhang J P, Zhang Q Y.2011. Expression pattern and functions of autophagy-related gene Atg5 in zebrafish organogenesis[J]. Autophagy, 7(12): 1514-1527. [19] Karanasios E, Ktistakis N T.2016. Autophagy at the Cell, Tissue and Organismal Level || History of Autophagy After 1963[M]. Springer International Publishing, Berlin, pp. 7-15. [20] Koga H, Kaushik S, Cuervo A M.2010. Altered lipid content inhibits autophagic vesicular fusion[J]. FASEB Journal, 24(6): 3052-3065. [21] Lepine S, Allegood J C, Edmonds Y, et al.2011. Autophagy induced by deficiency of sphingosine-1-phosphate phosphohydrolase 1 is switched to apoptosis by calpain-mediated autophagy-related gene 5 (Atg5) cleavage[J]. Journal of Biological Chemistry, 286(52): 44380-44390. [22] Moreira G C M, Boschiero C, Cesar A S M, et al.2018. Integration of genome wide association studies and whole genome sequencing provides novel insights into fat deposition in chicken[J]. Scientific Reports, 8: 16222. [23] Nagy P, Sándor G O, Juhász G.2018. Autophagy maintains stem cells and intestinal homeostasis in Drosophila[J]. Scientific Reports, 8: 4644. [24] Ogasawara Y, Tsuji T, Fujimoto T.2020. Multifarious roles of lipid droplets in autophagy-Target, product, and what else?[J]. Seminars in Cell and Developmental Biology, 108(0): 47-54. [25] Paes M V, Lenzi H L, Nogueira A, et al.2009. Hepatic damage associated with dengue-2 virus replication in liver cells of BALB/c mice[J]. Laboratory Investigation, 89(10): 1140-1151. [26] Pandey V, Vijayakumar M V, Ajay A K, et al.2011. Diet-induced obesity increases melanoma progression: Involvement of Cav-1 and FASN[J]. International Journal of Cancer, 130(3): 497-508. [27] Pua H H, Dzhagalov I, Chuck M, et al.2007. A critical role for the autophagy gene Atg5 in T cell survival and proliferation[J]. Journal of Experimental Medicine, 204(1): 25-31. [28] Shi Q X, Jin X, Fan R F, et al.2019. Cadmium-mediated miR-30a-GRP78 leads to JNK-dependent autophagy in chicken kidney[J]. Chemosphere, 215: 710-715. [29] Singh R, Kaushik S, Wang Y, et al.2009. Autophagy regulates lipid metabolism[J]. Nature, 458(7242): 1131-1135. [30] Wu Y S, Lin Y, Huang C, et al.2020. Cardiac protection of functional chicken‐liver hydrolysates on the high‐fat diet induced cardio‐renal damages via sustaining autophagy homeostasis[J]. Journal of the Science of Food and Agriculture, 100(6): 2443-2452. [31] Xie Y C, Li J B, Kang R, et al.2020. Interplay between lipid metabolism and autophagy[J]. Frontiers in Cell and Developmental Biology, 8: 431. [32] Yang X, Fu Y J, Hu F Q, et al.2018. PIK3R3 regulates PPARα expression to stimulate fatty acid β-oxidation and decrease hepatosteatosis[J]. Experimental & Molecular Medicine, 50: 1-9. |
|
|
|