|
|
Inhibitory Effect of Glycyrrhizin on Biofilm Formation of Pseudomonas aeruginosa |
HUANG Pan1, WANG Zhi-Peng2, XIAO Chen-Wen2, JI Quan-An2, BAO Guo-Lian1,2,*, LIU Yan2,* |
1 College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China; 2 Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China |
|
|
Abstract Pseudomonas aeruginosa has multiple drug resistance, and the formation of biofilm is one of its important drug resistance mechanisms. Glycyrrhizin (GLY) has antibacterial effect. In order to investigate the effects of antibacterial activity and biofilm formation of GLY on clinical isolates of multidrug resistant P. aeruginosa, G1 strain (GenBank No. MZ683158) and G2 strain (GenBank No. MZ683159) were isolated from the eye secretions of rabbits suffering from keratitis (Zhejiang Shengzhou wool rabbit 'White King', Leporidae angora). Further, the minimum inhibitory concentration (MIC) of GLY on G1 and G2 strains was determined by microdilution method, crystal violet staining was used to quantify biofilm, the effect of GLY on biofilm morphology was observed by scanning electron microscope (SEM), and the expression of pelA, algA, rhlI, rhlR and pslA was analyzed by qPCR. The results showed that MICs of GLY against G1 and G2 strain were 40 and 20 mg/mL, respectively; both G1 and G2 strains could form biofilm, and G1 strain had stronger ability. The biofilm formation of G1 and G2 strains decreased significantly with the treatment of 20 mg/mL GLY (P<0.01). SEM observation showed that 5 mg/mL GLY significantly reduced the biofilm formation; under the treatment of 10 mg/mL GLY, the bacteria were dispersed and no obvious biofilm structure was found. The expression of pelA increased after 5 mg/mL GLY treatment without signifcant difference, while those of algA, rhlI, pslA and rhlR were significantly decreased (P<0.01). After 10 mg/mL GLY treatment, the relative expression of pelA, algA, rhlI, rhlR and pslA were significantly decreased (P<0.01) compared with the control. In conclusion, GLY had a inhibitory regulatory effect on the synthesis of P. aeruginosa biofilm in a dose-dependent manner, which might be due to the down regulating of related genes. This study provides a reference for in-depth study of the effect of GLY on P. aeruginosa biofilm and the treatment of P. aeruginosa keratitis in rabbits.
|
Received: 17 May 2021
|
|
Corresponding Authors:
*ly-liuyan@163.com;baoguolian@163.com
|
|
|
|
[1] 彭旭东, 高晗, 林静. 2020. 甘草甜素在机体感染性疾病中的保护作用[J]. 国际免疫学杂志, 43(03): 297-301. (Peng X D, Gao H, Lin J.2020. Protective effect of glycyrrhizin on infectious diseases[J]. International Journal of Immunology, 43(03): 297-301.) [2] 谭瑶, 赵清, 舒为群, 等. 2010. K-B纸片扩散法药敏试验[J]. 检验医学与临床, 7(20): 2290-2291. (Tan Y, Zhao Q,Shu W Q, et al.2010. K-B disk diffusion drug sensitivity test[J]. Laboratory Medicine and Clinical Medicine, 7(20): 2290-2291.) [3] 王朝霞, 宋丽君. 2002. 甘草甜素的研究现状[J]. 中国中西医结合杂志, (10): 796-798. (Wang Z X, Song L J. 2002. Research status of glycyrrhizin[J]. Chinese Journal of Integrated Traditional Chinese and Western Medicine, (10): 796-798.) [4] 易彩虹, 刘德梦. 2016. 大肠埃希菌生物被膜形成能力测定及其耐药性分析[J]. 山东医药, 56(02): 62-63. (Yi C H, Liu D M.2016. Determination of biofilm forming ability and drug resistance of Escherichia coli[J]. Shandong Medicine, 56(02): 62-63) [5] 于珊, 马旅雁. 2017. 铜绿假单胞菌铁摄取与生物被膜形成研究进展[J]. 生物工程学报, 33(09): 1489-1512. (Yu S, Ma L Y.2017. Research progress on iron uptake and biofilm formation of Pseudomonas aeruginosa[J]. Journal of Bioengineering, 33(09): 1489-1512.) [6] 张蒙蒙, 刘静, 张靖菊. 2020. 中药及有效成分对动物源病原菌生物被膜抑制作用的研究进展[J]. 现代畜牧兽医, (11): 60-64. (Zhang M M, Liu J, Zhang J J. 2020. Research progress on inhibition of traditional Chinese medicine and its active ingredients on biofilm of animal pathogenic bacteria[J]. Modern Animal Husbandry and Veterinary, (11): 60-64.) [7] Carruthers N J, McClellan S A, Somayajulu M, et al2020. Effects of glycyrrhizin on multi-drug resistant Pseudomonas aeruginosa[J]. Pathogens, 9(09): 766. [8] Chakotiya A S, Tanwar A, Naula A, et al.2016. Alternative to antibiotics against Pseudomonas aeruginosa: Effects of Glycyrrhiza glabra on membrane permeability and inhibition of efflux activity and biofilm formation in Pseudomonas aeruginosa and its in vitro time-kill activity[J]. Microbial Pathogenesis, 98: 98-105. [9] Colvin K M, Gordon V D, Murakami K, et al.2011. The pel polysaccharide can serve a structural and protective role in the biofilm matrix of Pseudomonas aeruginosa[J]. PLOS Pathogens, 7(1): 1001264. [10] Daniels R, Vanderleyden J, Michiels J.2004. Quorum sensing and swarming migration in bacteria[J]. FEMS Microbiology Review, 28(3): 261-289. [11] Ekanayaka S A, McClellan S A, Barrett R P, et al.2016. Glycyrrhizin reduces HMGB1 and bacterial load in Pseudomonas aeruginosa keratitis[J]. Investigative Ophthalmology Visual Science, 10(7): 5799-5809. [12] Friedman L, Kolter R.2004. Two genetic loci produce distinct carbohydrate-rich structural components of the Pseudomonas aeruginosa biofilm matrix[J]. Journal of Bacteriology, 186(14): 4457-4465. [13] Franklin M J, Nivens D E, Weadge J T, et al.2011. Biosynthesis of the Pseudomonas aeruginosa extracellular polysaccharides, alginate, Pel, and Psl[J]. Frontiers in Microbiology, 2: 167. [14] Hazlett L D, Ekanayaka S A, McClellan S A, et al.2019. Glycyrrhizin use for multi-drug resistant Pseudomonas aeruginosa: In vitro and in vivo studies[J]. Investigative Ophthalmology & Visual Science, 60(8): 2978-2989. [15] Irani M, Sarmadi M, Bernard F, et al.2010. Leaves antimicrobial activity of Glycyrrhiza glabra L[J]. Iranian Journal of Pharmaceutical Research, 9(4): 425-428. [16] Irie Y, Borlee B R, O'Connor J R, et al.2012. Self-produced exopolysaccharide is a signal that stimulates biofilm formation in Pseudomonas aeruginosa[J]. Proceedings of the National Academy of Sciences of the USA, 109(50): 20632-20636. [17] Jimenez P N, Koch G, Thompson J A, et al.2012. The multiple signaling systems regulating virulence in Pseudomonas aeruginosa[J]. Microbiology and Molecular Biology, 76(1): 46-65. [18] Kannan S, Sathasivam G, Marudhamuthu M.2019. Decrease of growth, biofilm and secreted virulence in opportunistic nosocomial Pseudomonas aeruginosa ATCC 25619 by glycyrrhizin acid[J]. Microbial Pathogenesis, 126: 332-342. [19] Karatan E, Watnick P.2009. Signals, regulatory networks, and materials that build and break bacterial biofilms[J]. Microbiology and Molecular Biology Reviews, 73(2): 310-347. [20] Leid J G, Willson C J, Shirtliff M E, et al.2005. The exopolysaccharide alginate protects Pseudomonas aeruginosa biofilm bacteria from IFN-γ-mediated macrophage killing[J]. Immunology, 175(11): 7512-7518. [21] Lesic B, Starkey M, He J, et al.2009. Quorum sensing differentially regulates Pseudomonas aeruginosa typeⅥsecretion locusⅠand homologous lociⅡandⅢ, which are required for pathogenesis[J]. Microbiology, 155(9): 2845-2855. [22] Lau G W, Hassett D J, Ran H, et al.2004. The role of pyocyanin in Pseudomonas aeruginosa infection[J].Trends in Molecular Medicine, 10(12): 599-606 [23] Mulcahy L R, Isabella V M, Lewis K.2014. Pseudomonas aeruginosa biofilms in disease[J]. Microbial Ecology, 68(1): 1-12. [24] Ovortrup K, Hultqvist L D, Nilsson M, et al.2019. Small molecule anti-biofilm agents developed on the basis of mechanistic understanding of biofilm formation[J]. Frontiers in Chemistry, 7: 742. [25] Parsek M R, Singh P K.2003. Bacterial biofilms: An emerging link to disease pathogenesis[J]. Annual Reviews Microbiology, 57: 677-701. [26] Peng X, Ekanayaka S A, McClellan S A, et al.2017. Characterization of three ocular clinical isolates of P. aeruginosa: Viability, biofilm formation, adherence, infectivity and effects of glycyrrhizin[J]. Pathogens, 6(4): 52. [27] Pérez-Pérez M, Jorge P, Pérez Rodríguez G, et al.2017. Quorum sensing inhibition in Pseudomonas aeruginosa biofilms: New insights through network mining[J]. Biofouling, 33(2): 128-142. [28] Sakuragi Y, Kolter R.2007. Quorum-sensing regulation of the biofilm matrix genes (pel) of Pseudomonas aeruginosa[J]. Bacteriology, 189(14): 5383-5386. [29] Stepanović S, Vuković D, Hola V, et al.2007. Quantification of biofilm in microtiter plates: Overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci[J]. APMIS, 115(8): 891-899. [30] Sutherland I W.2001. Biofilm exopolysaccharides: A strong and sticky framework[J]. Microbiology, 147(1): 3-9. [31] Tremblay Y D, Caron V, Blondeau A, et al.2014. Biofilm formation by coagulase-negative staphylococci: Impact on the efficacy of antimicrobials and disinfectants commonly used on dairy farms[J]. Veterinary Microbiology, 172(3-4): 511-518. [32] Zhang W, Li C.2016. Exploiting quorum sensing interfering strategies in gram-negative bacteria for the enhancement of environmental applications[J]. Frontiers in Microbiology, 6: 1535. [33] Zhao K, Tseng B S, Beckerman B, et al.2013. Psl trails guide exploration and microcolony formation in Pseudomonas aeruginosa biofilms[J]. Nature, 497(7449): 388-391. |
|
|
|