|
|
Preliminary Development of a Test Strip for Rapid Detection of Antibodies Against African swine fever virus |
JIANG Di-Ke1,*, WU Xu-Long2,*, CHEN Di-Shi3, WANG Yin1,**, YAO Xue-Ping1, LUO Yan1, YANG Ze-Xiao1, ZHANG Peng-Fei1 |
1 College of Veterinary Medicine/Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China;
2 Chengdu Agricultural College, Chengdu 611130, China;
3 Sichuan Center for Animal Disease Control and Prevention, Chengdu 610041, China |
|
|
Abstract In order to establish a rapid, efficient and simple method for detecting African swine fever virus (ASFV) antibodies, this study used a prokaryotic expression system to express ASFV capsid protein (p72) as a capture antigen, and anti-p72 polyclonal antibody and rabbit anti-pig IgG were coated on nitrocellulose membrane, as the quality control line (C line) and detection line (T line), respectively. The reaction conditions were optimized to prepare colloidal gold immunochromatographic test strip (ICTS), used for clinical sample detection. The results showed that the pCold-TF-p72 recombinant protein was successfully constructed in this study. Western blot and agar expansion experiments showed that the prepared anti-p72 polyclonal antibody had good reactogenicity and immunogenicity. The test strips could specifically detect anti-ASFV antibody and had no cross-reaction with positive sera against Pseudorabies virus, Porcine circovirus 2, Porcine reproductive and respiratory syndrome virus and Classical swine fever virus; In the detection of clinical samples, the positive detection rate of ICTS was 55.17% (48/87), the positive detection rate of a commercial ELISA kit was 59.77% (52/87), respectively. The agreement between ICTS and a commercial ELISA kit (IDVET) was 92.31% (48/52). The ICTS prepared in this study provides a reference for clinical ASFV antibody detection and disease prevention.
|
Received: 05 March 2021
|
|
Corresponding Authors:
**yaanwangyin@tom.com
|
|
|
|
[1] 白晨雨, 王同燕, 赵少若, 等. 2020. 非洲猪瘟病毒p62蛋白单克隆抗体的制备及初步应用[J]. 畜牧兽医学报, 51(5): 181-189.
(Bai C Y, Wang T Y, Zhao S R, et al.Preparation of monoclonal antibodies against recombinant p62 protein of African swine fever virus and its preliminary application[J]. Acta Veterinaria et Zootechnica Sinica, 51(5): 181-189.)
[2] 陈溥言. 2006. 兽医传染病学(第五版)[M]. 中国农业出版社, 北京. pp.216-218.
(Chen P Y.2006. Veterinary infectious diseases (fifth version)[M]. China Agriculture Press, Beijing, China, pp. 216-218.)
[3] 胡永新, 赵永刚, 张永强, 等. 2019. 表达非洲猪瘟病毒p72蛋白复制缺陷型重组腺病毒的构建及鉴定[J]. 畜牧兽医学报, 50(8): 1635-1641.
(Hu Y X, Zhao Y G, Zhang Y Q, et al.2019. Construction and identification of a replication-deficient recombinant Adenovirus expressing the p72 protein of African swine fever virus[J]. Acta Veterinaria et Zootechnica Sinica, 50(8): 1635-1641.)
[4] 李飞, 徐雷, 朱玲. 2019. 非洲猪瘟疫苗研究进展[J]. 病毒学报, (4): 701-707.
(Li F, Xu L, Zhu L. 2019. Research progress of African swine fever vaccine[J]. Chinese Journal of Virology, (4): 701-707.)
[5] 王彩霞, 杜方原, 林祥梅, 等. 2020. 稳定表达非洲猪瘟病毒P54蛋白的Vero细胞系的建立[J]. 生物技术通报, 36(5): 139-144.
(Wang C X, Du F Y, Lin X M, et al.2020. Generation of a Vero cell line stably expressing African swine fever virus P54 protein[J]. Biotechnology Bulletin, 36(5): 139-144.)
[6] 王向鹏, 孙元, 杨增岐, 等. 2010. 检测猪瘟病毒野毒株胶体金免疫层析方法的建立[J]. 中国预防兽医学报, 32(6): 441-445.
(Wang X P,Sun Y, Yang Z Q, et al.2010. Establishment of colloidal gold immunochromatographic method for detecting wild strains of Swine fever virus[J]. Chinese Journal of Preventive Veterinary Medicine, 32(6): 441-445.)
[7] 魏后军, 范志宇, 王芳, 等. 2018. 检测兔出血症病毒抗体胶体金试纸条的研制及初步应用[J]. 畜牧兽医学报, 49(3): 614-619.
(Wei H J, Fan Z Y, Wang F, et al.2018. Development and preliminary application of colloidal gold test strips for detecting Rabbit hemorrhagic disease virus antibody[J]. Acta Veterinaria et Zootechnica Sinica, 49(3): 614-619.)
[8] 吴海涛, 成大荣, 吴萌, 等. 2018. 非洲猪瘟病毒胶体金免疫层析试纸条的研制[J]. 黑龙江畜牧兽医, (17): 126-128.
(Wu H T, Cheng D R, Wu M, et al. 2018. Development of colloidal gold immunochromatographic test strips for African swine fever virus[J]. Heilongjiang Animal Science and Veterinary Medicine, (17): 126-128.)
[9] 吴亚楠, 朱潇静, 周博伦, 等. 2020. 非洲猪瘟病毒TaqMan荧光定量PCR检测方法的建立[J]. 中国兽医学报, 40(05): 888-891, 896.
(Wu Y N, Zhu X J, Zhou B L, et al.2020. Development of a TaqMan real-time fluorescent RT-PCR for specific detection of African swine fever virus[D]. Chinese Journal of Veterinary Science, 40(05): 888-891, 896.)
[10] 于康震. 2012. OIE陆生动物诊断试验与疫苗手册(第7版)[M]. 中国农业出版社, 北京. pp. 1191-1205.
(Yu K Z.2012. Manual of Diagnostic Tests and Vaccines for Terrestrial Animals (Seventh Version)[M]. China Agriculture Press, Beijing, China, pp. 1191-1205.)
[11] 张鑫宇, 左伟勇, 朱善元, 等. 2014. 非洲猪瘟病毒p54抗体胶体金试纸检测方法的建立[J]. 中国预防兽医学报, 36(4): 281-285.
(Zhang X Y, Zuo W Y, Zhu S Y, et al.2014. Establishment of colloidal gold strip for detecting antibody against African swine fever virus[J]. Chinese Journal of Preventive Veterinary Medicine, 36(4): 281-285.)
[12] Atuhaire D K, Afayoa M, Ochwo S, et al.2013. Prevalence of African swine fever virus in apparently healthy domestic pigs in Uganda[J]. BMC Veterinary Research, 9(2): 744.
[13] Bao J, Wang Q, Lin P, et al.2019. Genome comparison of African swine fever virus China/2018/Anhui XCGQ strain and related European p72 Genotype Ⅱ strains[J]. Transboundary and Emerging Diseases, 66(3): 1167-1176.
[14] Brian W J.2008. Animal viruses: Molecular biology[J]. Emerging Infectious Diseases, 14(5): 867.
[15] Ferreira H C.2014. No evidence of African swine fever virus replication in hard ticks[J]. Ticks and Tick-borne Diseases, 5(5): 582-589.
[16] Gabriel C, Blome S, Malogolovkin A, et al.2012. Characterization of African swine fever virus Caucasus isolate in European wild boars[J]. Emerging Infectious Diseases, 18(4): 2342-2345.
[17] García B, Sanz A, Nogal M L, et al.1986. Monoclonal antibodies of African swine fever virus: Antigenic differences among field virus isolates and viruses passaged in cell culture[J]. Journal of Virology, 58(2): 385-392.
[18] Jia N, Ou Y, Pejsak Z, et al.2017. Roles of African swine fever virus structural proteins in viral infection[J]. Journal of Veterinary Research, 61(2): 135-143.
[19] Neilan J G, Zsak L, Lu Z, et al.2004. Neutralizing antibodies to African swine fever virus proteins p30, p54, and p72 are not sufficient for antibody-mediated protection[J]. Virology, 319(2): 337-342.
[20] Netherton C L, Goatley L C, Reis A L, et al.2019. Identification and immunogenicity of African swine fever virus antigens[J]. Frontiers in Immunology, 10: 1318.
[21] Odemuyiwa S O, Adebayo I A, Ammerlaan W, et al.2000. An outbreak of African swine fever in nigeria: Virus isolation and molecular characterization of the p72 gene of a first isolate from west Africa[J]. Virus Genes, 20(2): 139-142.
[22] Oganesyan A S, Petrova O N, Korennoy F I, et al.2013. African swine fever in the Russian federation: Spatio-temporal analysis and epidemiological overview[J]. Virus Research, 173(1): 204-211.
[23] Petrovan V, Murgia M V, Wu P, et al.2020. Epitope mapping of African swine fever virus (ASFV) structural protein, p54[J]. Virus Research, 279: 197871.
[24] Petrovan V, Yuan F F, Li Y H, et al.2019. Development and characterization of monoclonal antibodies against p30 protein of African swine fever virus[J]. Virus Research, 269: 197632.
[25] Quembo C J, Jori F, Vosloo W, et al.2018. Genetic characterization of African swine fever virus isolates from soft ticks at the wildlife/domestic interface in Mozambique and identification of a novel genotype[J]. Transboundary and Emerging Diseases, 65(2): 420-431.
[26] Ronish B, Hakhverdyan M, Stahl K, et al.2011. Design and verification of a highly reliable linear-after-the-exponential PCR (LATE-PCR) assay for the detection of African swine fever virus[J]. Journal of Virological Methods, 172(1-2): 8-15.
[27] Sánchez E, Quintas A, Nogal M, et al.2013. African swine fever virus controls the host transcription and cellular machinery of protein synthesis[J]. Virus Research, 173(1): 58-75.
[28] Simón-Mateo C, Andrés G, Almazán F, et al.1997. Proteolytic processing in African swine fever virus: Evidence for a new structural polyprotein, pp62[J]. Journal of Virology, 71(8): 5799-5804.
[29] Wu X, Xiao L, Peng B, et al.2016. Prokaryotic expression, purification and antigenicity analysis of African swine fever virus pK205R protein[J]. Polish Journal of Veterinary Sciences, 19(1): 41-49. |
|
|
|